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Abstract

A vast majority of applications of calculus in di�erent sciences consists of models

with systems of di�erential equations e.g. dynamical systems, as any perusal of the

current literature will indicate. In addition, as Henri Poincaré showed, the funda-

mental laws of nature are, from a mathematical point of view, di�erential equations.

Therefore, in our opinion, di�erential equations and dynamical systems should be at

the center of every introductory calculus course and this can be accomplished through

the application of technology. It is now possible to solve di�erential equations numer-

ically and graphically with little manual e�ort, allowing them to take their rightful

place in an introductory course. The development of conceptual understanding rather

than algebraic technique is important. We designed an introductory calculus course

based on these principles. We will show, how this course is structured. It begins with

a simple model (Newton's law of cooling) which leads -at �rst more intuitively- to

the fundamental concepts of derivative (rate of change), di�erential equation, Euler's

Method, model and dynamical system. We introduce the derivative in the original

and general sense as �ux and not through the traditional slope of a tangent line.

The central chapters are dedicated to di�erential equations and dynamical systems,

introducing the graphical method of state plane analysis. With the TI-Nspire tech-

nology direction �elds and trajectories can be represented graphically and thanks to

the sliders it is even possible to experimentally investigate the impact of the variation

of the parameters. This can enhance a deep understanding of the systems under con-

sideration. We will demonstrate the power of these methods with some impressive

examples. With the focus on dynamical systems the great signi�cance of calculus

can be far better demonstrated than with the traditional approach to introducing

calculus.
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1 Introduction: Why do Di�erential Equations and Dy-

namical Systems belong at the center of a calculus

course?

Why do we teach calculus in schools of higher general education? Calculus is one of the
most important mathematical theories ever developed and it plays an important role in
many scienti�c and technological contexts. Physics and engineering without calculus are
simply impossible, nearly every scientist and every engineer uses methods and results from
calculus in his work. From a utilitarian perspective it is very important that students of
a lot of diverse disciplines have a basic knowledge of and basic competences in calculus.
Moreover, calculus is one of the greatest achievements of the human mind and it is a
language and a tool of modern science. It is impossible to understand the laws of physics
without knowledge and comprehension of calculus and if one does not understand physics,
one cannot understand nature. As Galileo Galilei told us: Philosophy is written in that

great book which ever lies before our eyes - I mean the universe - but we cannot understand

it if we do not �rst learn the language and grasp the symbols in which it is written. This

book is written in the mathematical language, and the symbols are triangles, circles and

other geometrical �gures, without whose help it is impossible to comprehend a single word

of it; without which one wanders in vain through a dark labyrinth. At the time of Galilei
calculus was not yet invented. If calculus had been known by Galilei, he surely would
have said �derivatives, integrals, di�erential equations, phase planes and trajectories etc. �

instead of �triangles, circles and other geometrical �gures�. But let us have a closer look
at the way calculus is used by considering some important examples:

• Public Health: Every couple of years we have an epidemic like avian �u, swine �u
etc. and an ordinary in�uenza occurs every winter. For a public health o�ce it is
very important to understand the way a disease spreads through the population and
to predict what fraction falls ill and when. Furthermore, it is important to investigate
the e�ect of di�erent possible measures (vaccination, quarantine, drugs etc.). To this
purpose, a model will be created. The model which is generally used is the S-I-R-
model or a modi�cation thereof. This model consists of a system of coupled nonlinear
di�erential equations as we will see in more detail later in section 4.

• Climate, Weather report: Our daily weather report as well as the predictions
concerning the climate are based on huge systems of di�erential equations. The
most powerful computers of the world are permanently solving this equations with
changing initial conditions.

• Biology, population dynamics: Predator-prey, symbiosis, and competition are
just three di�erent fundamental modes of interaction between populations in biology.
Di�erential equations allow the modelling of these basic forms of interaction as well
as more complicated systems with more than two species involved.
As an example a political implication: Should we completely forbid the hunting of
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whales? Only a careful investigation of an appropriate model could provide su�cient
data for evaluating the impact of whale hunting on the ecological system of the
oceans. Thus calculus, and especially di�erential equations, are a necessary tool for
assuming responsibility and making informed decisions.

• Economics All kinds of dynamical systems are used to investigate and predict eco-
nomical systems.

• Physics Physics and calculus are strongly related. Physics prompted the develop-
ment of calculus and calculus enabled the development of physics. Henri Poincaré
formulated this very important connection in his famous paper �the value of science�
as follows:

Newton has shown us that a law is only a necessary relation between the

present state of the world and its immediately subsequent state. All the

other laws since discovered are nothing else; they are in sum, di�erential
equations [1].

These applications di�er fundamentally from the applications of calculus in an ordinary
introductory course. The traditional highlight of application usually consists of the deter-
mination of optimal shapes, for instance the optimal shape of a box or of a beer can.
Usually, di�erential equations have no place or only a very small place at the introductory
level. Traditionally, di�erential equations is a more advanced topic, requiring one or two
years of calculus as a prerequisite. It is divided into a number of cases and subcases, and
an array of di�erent techniques is developed to deal with di�erent cases. Some of these
techniques are very elegant and clever, others are very sophisticated. With these tech-
niques mathematicians learn the intricate reasoning and analysis which is fundamental for
mathematics at a higher level, but this is in most cases too sophisticated and demanding
for beginners of calculus. Technology is now providing the possibility to treat di�erential
equations and systems of di�erential equations with a simple and intuitively clear numer-
ical approach. The underlying concepts are comprehensible at this level. So it is possible,
at an elementary level, to address problems and concepts which the overwhelming majority
of learners would never get to see in a traditional curriculum. Problems with a much larger
scope and importance than the traditional problems.

2 The design of the course, guidelines

• Calculus is a language as well as a tool for exploring dynamical processes in science.
Students should be able to read and write this language. The techniques of calculus,
the manipulative skills, must be subordinate to an overall view of the central concepts.

• The study of modeling inevitably leads to di�erential equations. Di�erential equa-
tions should therefore be fundamental objects of study.
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• The concept of a dynamical system is central to science. Technology makes it possible
to explore dynamical systems at the introductory level, using a simple intuitively clear
numerical approach: Euler's Method.

• Processes of successive approximation are key tools of calculus. These processes are
more important than the output -the limit- which often cannot be given in a closed
form.

• Technological tools tremendously enlarge the range of questions and problems we
can explore and the ways we can treat them. The appropriate use of these tools is
therefore a central topic in a contemporary calculus course.

• Multiple representations: whenever possible, each topic will be representated and
discussed from a numerical, a graphical and an algebraical point of view. The tran-
sition between these di�erent modes of representation is of great importance and a
software which enables these transitions is of great value.

• Euler's method plays the role of an universal mathematical and didactical tool in
this course [3]. It makes it possible to solve di�erential equations numerically, but
moreover it also provides the insight that an initial value problem has a unique
solution, enables the de�nition of the number e and last but not least, can be used
for an elegant proof of the fundamental theorem of calculus.

This course will result in substantial shifts in emphasis in comparison with a traditional
course. Here are the most striking:

Increase Decrease
concepts manipulative skills
numerical solutions algebraical closed-form solutions
graphs and graphical solutions formulas
approximations exact solutions
semantics syntax

3 A context-orientated introduction to calculus

Nearly every introduction to calculus starts with the investigation of a tangent line, com-
monly a tangent line at a point of a quadratic parabola. The derivative is then de�ned as
the slope of this tangent line. In our opinion, this is the wrong approach. The �rst im-
pression is important, the �rst impressions lasts, so the way our students think about the
derivative depends on the introduction. The slope of a tangent line is a statical concept,
but the derivative should be a dynamical concept. Calculus is the mathematics of change,
and the most important meaning of the derivative is that it is a measure of change: the rate
of change. From a semantic and didactic point of view, there is a big di�erence whether,
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in the mind of the students, the word derivative conjures up �rst the rate of change rather
than the slope of a tangent line. Furthermore, our starting point is, that every concept
should be developed in the context of a scienti�c question. Our introduction starts with
an experiment, the cooling of hot co�ee. The process of cooling will be measured, and
the data can be analyzed. Thus we start with a very fundamental question: How can I
�nd a way from data to functions, how can I �nd and construct models which represent
the measured data and provide an insight into the underlying processes. There are many
modelling approaches. The most basic approach is an empirical. The idea is to �t a curve
through the given set of data and then use this curve to predict outcomes where there
are no data. The mathematical method of this approach is regression. The disadvantage
of this approach is that we cannot be con�dent that the found function applies outside
the range of the available data and that the parameters have no meaning. A much more
substantial and elaborate modelling process is at work with di�erential equations. With
this approach we formulate mathematical equations, which describe the basic fundamental
relationships between the variables of the problem and their rates of change. In other
words we formulate di�erential equations. We will show how we can introduce with this
approach not only the notion of derivative but also the concept of a di�erential equation
and a numerical method to solve this equation. When we analyze the data, it is important
to focus on the rate of change of the considered physical variable, in our introduction the
temperature of the co�ee. Here is an example of how the graphic and numerical represen-
tation of the measured temperature looks like

Figure 1: cooling of the co�ee Figure 2: numerical data

If we focus on the rate of change of the temperature of the co�ee, the discussion and
investigation of the measured data lead more or less directly to the �rst model, namely
Newton's law of cooling: The co�ee cools o�, and it cools o� faster at the beginning, when
the di�erence between the temperature of the co�ee and the temperature of the room is
greater. The simplest assumption we can make is that the rate of cooling is proportional
to the temperature di�erence between the co�ee and the room. We get the di�erential
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equation
T ′(t) = −k · (T (t)− Tu),

T (t) is the temperature as a function of the elapsed time t since the start of the measure-
ment, Tu denotes the room temperature. T ′(t) will be introduced as the rate of change of
the temperature and this is nothing other than the expression of how fast the temperature
decreases. This is easily understood and needs no deep comprehension of tangent lines or
limits although the very important concept of limit must be considered later for re�ning
the concept of derivative and making it more precise. From the given data we can in fact
just calculate average rates of change in very small intervals, depending on the setting of
the measurement (samples/second), and we take this as an approximation of the instan-

taneous rates of change which can intuitively easily be seen and understood. It is possible
to discuss at this point the di�erence between discrete and continuous and the transition
which consists in the process of making the time intervals smaller and smaller.
The starting point of Calculus is now given in form of a simple, intuitively clear model
with a di�erential equation. From the beginning the students deal with the core concepts
of modeling, rate of change (derivative) and di�erential equation, concepts which will suc-
cessively be re�ned and developed in the subsequent chapters. This happens in the clear
and easily understandable context of the process of cooling of a cup of co�ee. To solve this
di�erential equation we use a simple numerical method, namely Euler's Method.

4 Euler's Method, a fundamental tool

Euler's Method is known as a simple numerical method for �nding a solution of an initial
value problem. An initial value problem consists of a di�erential equation and an initial
value or a set of di�erential equations together with initial values. Because we have now
more elaborate and more e�cient methods like Runge-Kutta, Euler's Method has fallen
somewhat into oblivion. However Euler's Method is of great didactic value and is a funda-
mental tool for teaching important concepts of calculus. Its simplicity allows us to direct
the attention to the central aspects instead of struggling with technical di�culties. Let us
see how Euler's Method works in the previous example, using TI-Nspire. There are several
possibilities, each one with its own didactic and mathematical value.
Example: T ′(t) = −k · (T (t)− Tu), k = −0.1, Tu = 20◦C, initial value T (0) = 80◦C.

Lists & Spreadsheet

• If we choose ∆t = 0.1min and a period of 20min we de�ne in the �rst column the
time t as a sequence:(=seq(0.1*n,n,0,200)).

• In the �rst cell of the second column (B1) we write the initial value (80).

• In the second cell (B2) we calculate this value with Euler's Method:
(=b1-0.1*(b1-20)*0.1) using the fundamental recursion T (t+ ∆t) = T (t) +T ′(t) ·∆t.
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• With the command ��ll� we copy the formula of B2 to the whole column.

• We denote the columns A and B with �time� and �temp� respectively and in a Graphs
& Geometry-page we can plot the graph as a scatter-plot.

Figure 3: Euler's Method Figure 4: scatter-plot

With sliders it is possible to change the parameters T (0), Tu and k dynamically.

Calculator, user-de�ned function

With TI-NspireTM CAS it is possible to de�ne a function. This function can then be used
in all applications.

• In the application �Calculator� choose [
�� ��menu , 9: Functions&Programs, 1:Program

Editor, 1:New]

• Choose a name, e.g. �cooling� and choose the type: Function

• The function can now be de�ned as follows. In this example dt = ∆t

Figure 5: Userde�ned function Figure 6: plot
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Graphs, Graph-Type: Di�erential Equations

Since the version 3.0 it is possible to graph the solutions of di�erential equations directly
with TI-NspireTM.

Figure 7: Graph Type:DE Figure 8: plot

Euler's Method makes it possible to construct the function t 7−→ T (t) and it provides the
insight that an initial-value-problem has a unique solution, a very important theorem, the
theorem of Picard-Lindelöf.

5 Mathematical modelling with di�erential equations

In our everyday lives, models have become an important part. They range from local
personal decisions -do I bring along my raingear for tomorrow's hike- to global decisions
which have a profound impact on our future. The main strengths and objectives of models
are on the one hand the provision of a deeper understanding of the involved processes
and systems, and on the other hand the predictive power which helps much in decision-
making. Mathematical models are used extensively in ecology and biology to examine e.g.
population �uctuations, the spread of a disease, erosion, the spread of pollutants etc. In
�uid mechanics, models are used to design racing yachts or to understand and predict the
formation and development of tsunamis. There are many di�erent modelling approaches
such as empirical models, simulation models, stochastic models, deterministic models. The
last approach is widely used, and this is the one which works with di�erential equations.
We use this approach which contains two fundamental ideas: The �rst is that we can write
down equations for the rates of change of the relevant variables of the model. These di�er-
ential equations re�ect the important features of the process we seek to model. The second
idea is, that these equations determine the variables as functions of time which enables us
to make predictions.
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In sum: di�erential equations de�ne functions.
We begin with four simple and fundamental models of a single population: linear, expo-
nential, limited and logistic. The new point of view is that these growing processes are now
de�ned with di�erential equations. Thus we de�ne the linear function with the equation
y′ = m, (m constant), and the exponential function with the equation y′ = k · y. These
functions are growing without any limit with the time. For this reason we introduce the
concept of saturation or carrying capacity S and limiting respectively braking factor. When
the dependent variable y = f(t) of the function approaches S then their rate of change
will be successively slowed down and reach zero when y = S. This can be done with the
factor b = (1 − y

S
) (braking factor). This factor is b ≈ 1 when y << S and b ≈ 0 when y

is near S. Thus we de�ne the limited growth and the logistic growth with the di�erential
equations y′ = (1− y

S
)m resp. y′ = (1− y

S
)ky.

After the single population models we continue with interacting population models. These
models are relevant where two or more populations depend on each other. The most impor-
tant examples are predator-prey interaction, competing species interaction and symbiosis.
We will have a closer look at some of these systems in the next section.
We also study a model with three populations, the famous S-I-R-model. Let us have a
closer look at this model (a more detailed description can be found in [2] and [5]).

The S-I-R-model is used to describe the spread of a contagious disease. The population is
divided into three groups:

• Susceptible: those who have never had the illness and can catch it;

• Infected: those who currently have the illness and are contagious;

• Recovered: those who have already had the illness and are now immune.

Model Assumptions:

• Random di�erences between individuals can be neglected.

• The disease is mild, so anyone who falls ill eventually recovers.

• All those who recover from the disease are then immune.

• We neglect the latent period for the disease, setting it equal to zero.

Compartment or �ow diagram
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Figure 9: input-output diagram for the S-I-R-model

• The rate of transmission: Consider a single susceptible individual during a small
interval ∆t. Let's p denote the probability that this person will be infected when he
meets an infected person. The probability that this person meets an infected person
during an interval of length ∆t proportional to the number I of infected and to the
length of the considered interval, thus q ·I ·∆t. Therefore during the interval ∆t, each
susceptible individual will be infected with the probability p ·q ·I ·∆t = a ·I ·∆t. The
parameter a = p · q is called transmission coe�cient. The number of newly infected
individuals during ∆t is therefore a · S · I ·∆t and the rate equation for S is:

S ′ = −aSI

The value of a depends on the level of contagiousness of the disease, but also on the
general health of the population and the level of social interaction between its mem-
bers. One strategy for dealing with an epidemic is to alter he value of a. Quarantine,
for instance, will do this.

• The rate of recovery: Assuming that the rate of infected individuals who recover
is directly proportional to the number I we write

R′ = b · I

The parameter b is called recovery rate, its reciprocal b−1 can be identi�ed with the
residence time in the compartment I, in other words b−1 is the average duration of
the illness.

The complete model now has the form

S ′ = −aSI
I ′ = aSI − bI

R′ = bI
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Combines with initial values these equations de�ne three functions S = S(t), I = I(t)
and R = R(t). We can solve these equations with a numerical method (Euler's method or
Runge-Kutta methods). With TI-Nspire it is possible to investigate the in�uence of the
parameters a and b on the behavior of the system.

Example

This example was given by Murray, based on data compiled by the British Communicable
Disease Surveillance Centre (British Medical Journal, March 4 1978, p. 587)[4]. The event
was a �u epidemic in a boys boarding school in the north of England. There were 763
resident boys, including one initial infective. The data for the two-week epidemic are given
in the list below, which was constructed by reading values from the graph in the original
publication. The values of the transmission rate and the recovery rate can be found with
sliders. The data appear to agree well with the model's predictions for a = 0.00218 and
b = 0.44

Figure 10: Numerical solution of the di�erential equations
for an in�uenza epidemic in an English boarding school in
1978. The black dots correspondent to the original data.

There are a number of extensions of the basic S-I-R-model, for instance with the incor-
poration of a latent period or continuous vaccination. More complicated models involve
populations structured into several groups, such as age groups or social groups.

6 Dynamical Systems

The modelling of the behavior of physical systems as they evolve over time often takes the
following form: We have two (or more) variable quantities y1 and y2 that are functions
of time, and we want to �nd the nature of these functions. Empirical knowledge and
assumptions (e.g. physical chemical or biological laws) enable us to formulate how these
functions y1(t) and y2(t) are changing with time. Therefore we can calculate y1′(t) and
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y2′(t) whenever we know the values of y1 and y2 and possibly t.
In other words, we have a system of di�erential equations. Such a set of di�erential
equations is called a dynamical system. Dynamical systems play important roles in all
branches of science.
In many instances, the rules determining y1′(t) and y2′(t) depend only on the current
values of y1 and y2, but not on the value of t. In this case, the knowledge of the current
state of the system is su�cient for determining the future and past states of the system.
This kind of deterministic systems are called autonomous systems.
Thus an autonomous dynamical system consists of an abstract phase space or state space,
whose coordinates describe the state at any instant, and a dynamical rule that speci�es the
immediate future of all state variables, given only the present values of those same state
variables.
Dynamical systems are deterministic if there is a unique consequent to every state, or
stochastic or random if there is a probability distribution of possible consequents (the
idealized coin toss has two consequents with equal probability for each initial state). We
do not consider stochastic systems here.
One of the most important techniques for studying the behavior of autonomous systems is
the Phase Space Analysis or Phase Plane Analysis in the two dimensional case. This
is especially important for nonlinear systems, since there is usually no analytical solution
for a nonlinear system. In the previous chapters we solved these di�erential equations
numerically:
From a given starting point we used a numerical method like Euler's method to get values
for y1 and y2, this means solving an initial value problem. Each starting point generally
leads to a di�erent solution. In autonomous systems there is another very powerful way
of visualizing the solutions. This way enables an overview over the entire system, over all
possible solutions and the long time behavior. Moreover, the e�ect of di�erent parameters
on the behavior of the system can be investigated.

A short description of the method of Phase Plane Analysis

Phase plane analysis is much easier to explain with an example than in any other way.
We will discuss a model of competition that demonstrates the great value of phase plane
analysis. We consider two species y1 and y2 competing for the same food or territory. Each
species has a negative impact on the growth rate of the other. The model is constructed
from the following assumptions:

• In the absence of the other species, each species growth logistically.

• The presence of the opponent means, that some of the territory (or food) is occupied
by them, which leads to a lower e�ective saturation level.
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These assumptions lead to the following di�erential equations:

y1′ = a · y1 ·
(

1− y1 + b · y2

S1

)
y2′ = b · y2 ·

(
1− y2 + d · y1

S2

)
Remark: in the following illustrations we set the value of S1 = S2 = 200, the values of the
other parameters can be regulated with sliders.

• State, phase space
Instead of plotting the values of y1 and y2 against the time t we take these values as
coordinates of a point in the y1-y2-plane. As the system changes, the point (y1, y2)
will trace out a curve in this plane. The ordered pair of numbers (y1, y2) is called
a state and the portion of the plane corresponding to physically possible states is
called phase space or phase plane respectively.

• trajectories The curve that an arbitrary starting or initial point yi1, yi1 traces out
as time is going on is called trajectory

Figure 11: time-graph of y1 and y2 Figure 12: trajectory

• nullclines
y1′ = 0 implies that either y1=0 or y2 = −y1+200

b
and

y2′ = 0 implies that either y2=0 or y2 = −d · y1 + 200
The set of points in the phase plane for which y1′ = 0 resp. y2′ = 0 are called
nullclines, more precisely y1-nullclines resp.y2-nullclines.

• steady state or equilibrium point

Each intersection-point between a y1′-nullcline and a y2′-nullcline is a steady state
or equilibrium point. These equilibrium points can be stable, unstable or neutral.
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• vector �eld
We can assign to each point in the state space a vector ~v =

(
y1′

y2′

)
. This vector

points in the direction of the trajectory through this point therefore all trajectories
are at every point tangential to the vector at this point.

• isosectors
The spaces in the phase plane that are bordered by the nullclines are called isosectors.
In each isosector y1′ is always positive or always negative, the same is true for y2′.
Therefore in each isosector there is a qualitative direction of the trajectory, namely
to the right right (y1′ > 0) or to the left (y2′ < 0) and up (y2′ > 0) or down (y2′ < 0).

Figure 13: nullclines and isosectors Figure 14: direction �eld

In our model of competition there are four di�erent cases (possible eventual outcomes):

1. y1 allways wins, y2 vanishes,

2. y2 allways wins, y2 vanishes,

3. depending on the initial conditions y1 or y2 wins, the oponent vanishes

4. there is a stable coexistence between y1 and y2.

If we are studying the phase plane, it is not hard to understand this and it becomes clear,
that only the parameters b and d are responsible for which case will occur.
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Figure 15: case 1 Figure 16: case 2

Figure 17: case 3 Figure 18: case 4

Let us consider another system. This system plays a role in the investigation of neurons
and is called FitzHugh-Nagumo model [6]. A neuron can be stimulated with an input, such
as an electrical current I. After the stimulus, the neuron is excited. The state of this
excitation is described by the variable y1, which represents the voltage in the neuron as
a function of time. When a neuron is excited, physiological processes in the neuron will
cause the neuron to recover from the excitation. The variable y2 represents this recovery.
The model can be described with the following equations:

y1′ = y1− 1

3
y13 − y2 + I

y2′ = 0.1 · (b + c · y1− y2)

The y1-nullcline is y2 = −1
3
y13 + y1 + I. The maximal slope of the y2-nullcline is dy2

dy1 = 1

at y1=0. The in�uence of the stimulus I is just a vertical shift.
The y2-nullcline is the straight line y2 = c · y1 + b.
For c > 1 there is always exactly one intersection regardless of the value of b.
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With no stimulus I = 0 there is a stable equilibrium and thus a constant voltage, the
same is true if the stimulus is weak.

Figure 19: Stimulus I = 0 Figure 20: stable equlibrium

A greater stimulus leads to a so called limit cycle, the voltage is oscillating, we have a
�ring neuron.

Figure 21: Stimulus I = 1.6 Figure 22: limit cycle

If the stimulus is beyond a certain level, again a stable equilibrium exists and the voltage
is no more oscillating.
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Figure 23: Stimulus I = 3.2 Figure 24: stable equlibrium

This example shows how the change of a parameter can dramatically change the behavior
of the system.

7 Numerical graphical and algebraic methods

Numerical methods have been for a long time the last recourse to be used when no clever
techniques for producing a closed form solution to the problem could be found. Students
traditionally expected that most problems would be tractable with appropriate analytical
techniques, and most of the books contained almost exclusively this kind of problems.
With the broad availability of technology the position is now reversed. Students can be
taught to approach every di�erential equation or every problem of integration, for instance,
knowing in advance that it will be solvable by numerical methods at least, and in some
lucky cases, an analytical solution is possible.
The algebraic viewpoint is central in a traditional calculus course. But this kind of course
is isolated from the disciplines it serves. Technical, contextfree algebraic manipulations do
not occur in biology, chemistry, economics and even physics. Algebra was widely used in
calculus for the last three hundred years because numerical and a lot of graphical methods
were practically inaccessible before the invention of the computer. Technology now allows
direct numerical and graphical solutions to real problems. Therefore, nonalgebraic methods
must play a central role in a contemporary calculus course. This shift in attitude is very
important as it enables us to use the universal concepts of calculus much more e�ectively
and these concepts are seen in a more universal light.

8 Conclusion

We have tried in this paper to show how important di�erential equations and dynamical
systems are and that these topics are central in most of the applications of calculus. Thanks
to the technology and with the emphasis on numerical and graphical methods it is possible
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to approach these topics at an introductory level. The ideas and concepts of calculus
continue to be in the center, rather than the numerical and graphical methods. These
methods merely serve as tools for dealing with these ideas and concepts.
Our course requires about 160 lessons which is about the same as a traditional course.
With the help of a TI-Nspire-CAS the students are able to solve the usual examination
problems of a traditional calculus course because TI-Nspire-CAS is also good and easy to
use for symbolic algebraic manipulations. But beyond that the students will know how
to solve the much more important real problems of modelling, di�erential equations and
dynamical systems.
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