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Where does this go? 
Start from (before) Adam and Eve … 
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Technology	  

Science	  

Mathema-cs	  

“Of course”, a good scientist 
(mathematician, engineer, teacher, 
student, …, university, school, …) tries 
to live all three aspects equally well. 
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However, conceptually, 
the three arrows are different! 
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Thus, now, mathematics is essentially 
the art of gaining knowledge 
and solving problems 
by  thinking (reasoning, …) 



© Bruno Buchberger 2014  14	  



Self-Application 
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Technology	  

Science	  

Mathema-cs	  



 
 

Self-application: 
 

the intelligence of nature, 
 

the nature of intelligence. 
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By self-application,  
the science  / techno / eco spiral 
gains speed, sophistication, … 
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The history of science 
is the history of 

 
how much these arrows become explicit. 
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If one understands this 
 

then one can look (forward) to the future. 
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“Ancient” Mathematics: 
“see the truth” 

•  observe (“mathematical”) objects in reality 

•  and “see” a (general) truth. 
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“Ancient” Mathematics: 
“see the truth” 

No clear distinction between  
 

“seeing” = observing 
and 
“seeing” = thinking 
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“Modern” Mathematics: 
“prove new truth from observed truth” 

Clear distinction between 
  

“seeing” = observing 
and 
“seeing” = thinking  (reasoning, … proving) 
 

                                             (observe) 
                              (a+b) (a+b)  =  c.c + 4.(a.b)/2 =  
                              
                                    (think) 
                                        =   a.a + 2.a.b + b.b     
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Mathematics of 20th Century 
mathematical logic:   

proof = finite sequence of thinking steps 
            on finite language objects 
 

result: “all mathematical truth can be built up 
           from simple truth” 
           in finitely many proof steps  (Gödel, “Bourbaki”) 
 
result: “all mathematical methods can be expressed 
           in the language of logic  (“computer”) 
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Note: 
 

In the 60 volumes of Bourbaki, 
the word “computer” does not occur ! 
 

Unfortunately, in 20th century, mathematics split into 
 

“pure” mathematics and 
“computational” mathematics. 
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Computational mathematics was “only” concerned with 
“approximate” problems using “approximate” numbers: 
 
          x2 + b x + c = 0,   x = ? 
               in case:  b = 3, c = 5: 
               x  = -1.5…  ± 1.65831… i 
 
Around 1950: “Symbolic Computation’’: 
           
                x =  1/2 (-b ± Sqrt (b^2 - 4 c )). 
                If you want, plug in  b = 3, c = 5. 
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How far can “symbolic computation” go? 
 
 
Answer:  Very far ! 
              But may be very difficult. 
              Why difficult? Or even impossible? 
 
1950 – now:  Symbolic algorithms  
              for traditional mathematical problems 
              (e.g. general non-linear systems, 
                      integration, 
                      differential equations, …) 
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A common misunderstanding: 
 

(Numeric or symbolic) algorithms are just a „silly“ 
iteration of simple steps. 
 

The truth:  
 
        Algorithms need „deeper“ mathematics  
        than „pure mathematics“. 
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Of course, rich „normal math“ will go on. 
 
However, math of 21th century will be „self-application“ 
of math to itself. In other words, „symbolics“ will be the 
essence. 

 
Symbolics 1st floor:  Invent new mathematics 

for symbolic algorithms for traditional math problems. 
 

Symbolic 2nd floor:  Invent algorithms for  
inventing and proving new mathematics.  
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Mathematics of 21st Century 



Theory, algorithms, procedures, software,, ... 
 

–   for inventing definitions 
–  for inventing and proving theorems 
–  for inventing problems 
–  for inventing and proving algorithms 
–  for building up and managing mathematical 

theories in a structured way. 
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Mathematics of 21st Century 
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observe	  thinking	  

think	  
about	  	  
thinking	  

Self-‐applica-on	  of	  math	  to	  math:	  

Thinking	  
(reasoning,	  
proving,	  ...)	  

automated	  	  
reasoning	  

act	  on	  thinking	  



An Example of “Two Floors Math” 
 
•  „first floor“ (1965 -...):  Gröbner bases 

•  „second floor“ (1995 - ...):  Theorema (system) 
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•  „first floor“ (BB 1965 PhD thesis -...):  Gröbner bases 

solved a 65 years open problem (specified 1899). 

•  „second floor“ (BB 1995 Lazy Thinking - ):  Can 
generate the main idea of the 1965 PhD thesis 
automatically from the 1899 problem specification. 

Details of Gröbner Bases and Lazy Thinking: a little bit 
difficult. 
 
Emphasis in this: On the methodological significance. 
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First Floor: Gröbner Bases 
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The Gröbner Bases Problem (sloppily): 
 
Given: F, a system of multivariate polynomials. 
 
Find:   G with same set of solutions  
              and all variables decoupled. 
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The Main Idea of Gröbner Bases Theory and 
Algorithmics (BB 1965): 
 
Theorem: F is a Gröbner basis iff  
               all “S-polys”, w.r.t. F can be reduced to 0. 
 
S-poly(f,g) :=  u . f  -  v . g, 
 
where u, v are such that   
 
                 u . L(f) = v . L(g) = LCM ( L(f), L(g) ). 
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Algorithm: For obtaining Gröbner bases G for F, 
 
      iterate the formation of S-polys  
 
      until all of them reduce (“divide”) to 0. 
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Second Floor: Lazy Thinking 
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The Algorithm Synthesis Problem: 
 
Given: A problem specification P. 
 
Find:   An algorithm A such that 
                for all inputs x,  P( x, A(x)). 
Examples:   
         P(x,y)  iff   y.y = x. 
         P(L,S)  iff   S is a sorted version of list L. 
         P(f,F)   iff   F’ = f. 
         P(F,G)  iff   G is a Gröbner bases for F. 
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The Lazy Thinking Method for Algorithm Synthesis: 
 
Given: A problem specification P. 
 
1st Step: Try out (one of finitely many) algorithm 
schemes A. 
 
(Example of an algorithm scheme: “divide and 
conquer”: 
 
A(x) :=  S( x)                             if x is basic 
             M ( A ( L(x)), A ( R(x) )  if x is not basic.) 
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2nd Step: Try to prove (automatically):  for all x, 
P( x, A(x) ). 
 
The proof will probably fail because nothing is 
known about the sub-algorithms S, M, L, R, … 
 
3rd Step (the kernel of lazy thinking):  From the 
failing proof, try to derive (automatically) 
specifications for the subalgorithms in the scheme 
(e.g. S, M, L, R, …) that will make the proof work. 
 
4th Step: Iterate Lazy Thinking until subalgorithm 
specifications are found for which algorithms are 
known. 
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When this Lazy Thinking procedure is applied to the 
specification P of the Gröbner bases problem (using 
the “critical pair / completion algorithm scheme”) 
then, in a couple of minutes, one obtains the main 
idea of Gröbner bases theory, i.e.  
 
•  the central notion of S-poly,  
•  the main theorem on S-polys and Gröbner bases, 
•  and the algorithm for computing Gröbner bases. 
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What are the implications of this result: 
 
-  The power of formalization and automated 

reasoning. 

-  The power of self-application. 

-  Is more intelligence needed for the 2nd floor than 
for the 1st floor?  … 
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Conclusions 
•  Math will always be in the center of the automation 

spiral. 

•  Math education, as the art of ex-plaining, must be 
(but is not) in the center of education. 

•  The art of ex-plaining is the more important the 
higher we go in the automation spiral. 
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Conclusions 
•  Focus of 21st century math: self-application. 

Automated mathematical invention and 
verification. 

 
•  The level of sophistication in the automation of 

mathematics has no upper bound. (Gödel!) 

   Oh, happy mathematics! 
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Conclusions 

•  Researching, applying, teaching math: 
Please,keep  all aspects together! 

•  Science, math, technology: Please, keep all 
aspects together! 

•  Universities, …, schools: Please, keep all aspects 
together! 
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Conclusions 
 
•  Build-up of web-accessible formal math 

knowledge bases (embracing current math 
software systems) will replace math journals. 

•  A significant part of the anonymous peer 
reviewing process will be automated. 
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Conclusions 
•  Using technology in math edu? Math = 

technology! 

•  Algorithms (on higher and higher levels)  are goal 
and means of math and math edu. 

•  Teaching math using “technology”: Give students 
a chance to repeat evolution!  (The White-Box / 
Black-Box Principle, BB 1989). 

  
•  The higher the “technology”, the more important 

the personal teacher! 
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Conclusions 
•  Is “observing – thinking – acting” good enough 

for dealing with nature? 

•  As you go forward in evolution, learn to go back 
in evolution!  What does this mean? See next 
slide! 
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