
																																																																																																					 	
	

	 	 74	

R&E-SOURCE	http://journal.ph-noe.ac.at	
Open	Online	Journal	for	Research	and	Education	
Special	Issue,	December	2017,	ISSN:	2313-1640	
	

Increasing	IT	skills	in	algorithmization	for	students	of	
applied	informatics	
	
Jana	Jurinová1	
	

Abstract	
In	 this	paper,	we	present	possibilities	 for	creating	and	using	purposefully	designed	 interactive	applications	 in	
order	to	understand	the	problematic	parts	taught	within	the	course	"Algorithms	and	Data	Structures	I"	and	the	
acquisition	of	the	required	IT	skills	of	students	in	informatics.	The	reason	is	steadily	decreasing	percentage	of	
students,	 despite	 the	 measures	 that	 have	 been	 taken	 and	 proved	 to	 be	 effective.	 These	 were	 specified	 in	
details	by	 the	author	 in	 another	paper	 (Jurinová,	2016).	However,	 their	 effectiveness	 is	 still	 not	 satisfactory,	
and	 therefore	 we	 continue	 to	 support	 teaching	 methods	 and	 forms	 of	 education	 by	 developing	 other	
customized	interactive	applications.
	
Keywords:	 Schlüsselwörter:	
Algorithm	
Algorithmization	
IT	Skills	
Interactive	Application	
Nassi-Schneiderman	Diagram		

Algorithmus	
Algorithmisierung	
Informatikkenntnisse	
Interaktive	Anwendung	
Nassi-Shneiderman	Diagramm	

	

1 Introduction	
	

From	 various	 studies	 (Herout,	 2016;	 Avancena,	Nishihara	 and	 Kondo,	 2015;	Urquiza-Fuentes	 and	Velázquez-
Iturbide,	2009),	as	well	as	from	own	experience	and	the	carried	out	research	(Jurinová,	2015;	Jurinová,	2013),	
we	have	found	out	that	the	more	diversified	and	entertaining	forms	of	learning	by	using	interactive	multimedia	
applications	and	e-materials	developed	with	the	purpose	to	 influence	the	specific	knowledge	and	skills,	have	
positive	 impact	 on	 learning.	 Students	 can	 better	 remember	 the	 subject	matter	 and	 are	more	motivated	 to	
study	the	topic	and	improve	knowledge.	Basics	of	algorithmization	are	the	basis	and	the	fundamental	subject	
for	 students	of	 IT	 field.	Abstract	nature	of	 learned	concepts,	 required	analytical	 thinking	and	 lack	of	 interest	
from	 students	 are	 the	 main	 causes	 of	 this	 failure.	 In	 addition,	 other	 institutions	 in	 the	 world	 face	 similar	
problems	on	a	global	scale.	Similarly	like	us,	they	are	trying	to	create	various	applications	(Avancena,	Nishihara	
and	Kondo,	2015;	Diehl,	2015),	which	would	facilitate	the	process	of	understanding	and	acquiring	the	required	
knowledge	and	skills.	The	research	presented	in	paper	(Jurinová,	2016)	was	oriented	for	this	type	of	students	
and	 carried	 out	 at	 the	 author’s	 workplace.	 Assuming	 that	 the	 division	 of	 the	 course	 “Algorithms	 and	
Programming”	 with	 a	 very	 broad	 concept	 and	 with	 the	 time	 allotment	 2	 hours	 of	 lectures	 and	 2	 hours	 of	
exercise	 per	 week	 into	 two	 mutually	 cooperating	 subjects	 “Algorithms	 and	 data	 structures	 I”	 and	
"Programming	I”	with	the	time	allotment	of	2	hours	of	 lectures	and	2	hours	of	exercise	per	week	for	each	of	
them	will	help	to	reverse	the	decline	in	student	success	has	proven	to	be	inadequate.	This	step,	however,	led	
to	a	new	reality	monitored	in	the	academic	year	2015/2016.	Based	on	statistics	from	the	Academic	Information	
System	 (AIS),	 the	 percentage	 of	 students	 in	 “Programming	 I”	 improved	 significantly,	 while	 their	 success	 in	
“Algorithms	and	Data	Structures	I”	deteriorated.	These	facts	are	illustrated	in	Fig.	1.	

																																																																				
1	Department	of	Applied	Informatics	and	Mathematics,	Faculty	of	Natural	Sciences,	University	of	Ss.	Cyril	and	
Methodius	in	Trnava,	Slovakia.	E-Mail:	jana.jurinova@ucm.sk	

																																																																																																					 	
	

	 	 75	

R&E-SOURCE	http://journal.ph-noe.ac.at	
Open	Online	Journal	for	Research	and	Education	
Special	Issue,	December	2017,	ISSN:	2313-1640	
	

	
Fig.	1:	Evaluation	of	the	students'	results	from	the	course	Algorithms	and	Data	Structures	I	and	Programming	I	for	academic	
year	2015/2016	

	
Based	on	this	fact,	it	can	be	said	that	the	acquisition	of	programming	skills	is	not	as	complicated	for	students	as	
the	analysis	and	writing	of	algorithms.	The	reason	is	also	the	fact	that	programming	can	be	understood	as	an	
engineering	activity.	On	the	other	hand,	the	algorithms	design	is	known	as	a	creative	and	intuitive	process.	This	
is	 evidenced	 by	 the	 fact	 that	 algorithmization	 is	 the	 science	 studying	 algorithms,	 while	 algorithm	 theory	 is	
mathematical	 science	 studying	 mathematical	 models	 of	 algorithms.	 The	 concept	 of	 creating	 an	 optimal	
algorithm	for	solving	the	problem	therefore	requires	students	to	have	extensive	knowledge	from	a	number	of	
areas	(mathematics,	programming,	algorithmization,	the	area	for	which	the	algorithm	is	designed),	as	well	as	
their	own	experience.	However,	programming	of	the	already	proposed	algorithm	expects	students	only	to	have	
acquired	 certain	 programming	 language	 and	 the	 syntax	 of	 individual	 commands.	 On	 the	 other	 hand,	
programming	output	control	is	based	on	functional	testing	(most	commonly	in	the	form	of	black-box,	grey-box	
or	white-box	testing)	of	 the	created	application,	 i.e.	 the	student	has	almost	 immediate	feedback	on	whether	
his/her	 program	 is	 working	 properly	 correctly	 or	 not.	 The	 student	 does	 not	 have	 such	 feedback	 after	
completing	 the	 algorithmization	 of	 the	 task.	 Because	 the	 only	 feedback	 control	 is	 level	 of	 the	 student's	
knowledge	or	the	control	directly	by	the	teacher/tutor	or	by	the	person	with	acquired	the	given	knowledge	and	
skills.	The	mentioned	fact	represents	the	problem	we	were	trying	to	solve	and	we	present	in	this	paper.	

2 Materials	and	methods	
If	the	student's	knowledge	is	insufficient	to	correctly	design	the	algorithm,	how	can	one	expect	a	proper	check	
of	the	result	of	his/her	activity?	On	the	other	hand,	it	cannot	be	expected	that	the	teacher	is	able	to	check	each	
student's	output	at	any	time	of	the	student's	study	(we	mean,	in	particular,	his/her	self-study).		

There	are	several	ways	to	write	algorithms:	verbal	(natural	language),	pseudocode,	graphic,	mathematical,	
etc.,	 each	 of	 which	 has	 its	 pros	 and	 cons.	 The	 subject	 of	 our	 interest	 in	 this	 paper	 is	 the	 graphical	
representation	 of	 algorithms,	 among	 which	 we	 include,	 beside	 others,	 a	 flowchart	 diagram	 and	 a	 Nassi-
Schneiderman	 diagram	 (NS	 diagram).	 NS	 diagrams	 are	 an	 alternative	 notation	 for	 process	 flowchart.	 It	 is	 a	
diagrammatic	approach	to	algorithm	design	but	is	not	as	bulky	to	draw	as	flowcharts.	Students	are	guided	to	
use	 both	 forms	 of	 this	 graphical	 representation	 of	 algorithms.	 Argumentatively	 and	 critically,	 they	 are	 also	
acquainted	with	a	rigorous	analysis	of	their	suitability	for	plotting	particular	factors.	 It	 is	not	always	useful	to	
use	a	flowchart	algorithm	representation	or	a	NS	diagram.	It	depends	on	the	use	of	control	structures	and	data	
structures.	 In	 general,	 however,	 it	 can	 be	 stated	 that	 the	 use	 of	 NS	 diagrams	 leads	 to	 fewer	 errors	 in	 the	
algorithm	design	that	students	do	when	using	a	flowchart.	It	results	from	the	nature	of	the	individual	diagrams.	

4.07	
6.5	 7.32	

18.7	

25.2	

38.21	

14.68	 13.76	
15.6	

13.76	
11.01	

31.19	

0	

5	

10	

15	

20	

25	

30	

35	

40	

A	 B	 C	 D	 E	 FX	

Evaluation	of	the	students'	results	from	the	subject		
Algorithms	and	Data	Structurers	I	and	Programming	I		

for	academic	year	2015/2016	

Algorithms	and	data	structuers	I	in	percentage	 	Programmig	I	in	percentage	

																																																																																																					 	
	

	 	 76	

R&E-SOURCE	http://journal.ph-noe.ac.at	
Open	Online	Journal	for	Research	and	Education	
Special	Issue,	December	2017,	ISSN:	2313-1640	
	

The	 flowchart	 is	 represented	 as	 an	 oriented	 graph,	 so	 that	 the	 plotting	 options	 against	 the	 NS	 diagram	
represented	 by	 the	 block	 composition	 are	multiple,	 i.e.,	 NS	 diagrams	 are	more	 structured	 than	 flowcharts.	
Although	the	use	of	flowchart	is	more	common,	due	to	the	above-mentioned	reasons	the	use	of	NS	diagrams	is	
more	appropriate	for	us.		

Several	 software	 solutions	 make	 it	 possible	 to	 carry	 out	 drawing	 of	 the	 designed	 algorithm.	 Based	 on	
marketing	surveys	or	 the	experience	of	 the	authors	 (Duffy,	2017;	Fairbanks,	2017;	MeraBheja	2017),	we	can	
include:	Lucidchart,	SmartDrawCloud,	Creately,	Draw.io,	Microsoft	Visio	Pro	for	Office	365,	Gliffy,	Edraw,	etc.	
Our	 goal	 is	 not	 to	 assess	 the	 suitability	 or	 choice	of	 specific	 software.	 The	 aim	 is	 to	document	 the	 fact	 that	
there	 are	 enough	 software	 options	 for	 creating	 a	 flowchart.	 However,	 none	 of	 these	 applications	 support	
publication	of	the	plotted	algorithm	directly	into	the	programming	language.	This	is	not	their	primary	function.	
Unlike	a	wide	range	of	software	for	drawing	flowcharts,	the	range	of	software	solutions	for	NS	diagrams	is	very	
narrow.	 Edraw	 and	 SmartDraw	 belong	 to	 the	 most	 known	 software	 of	 this	 type.	 Application	 Structorizer	
(Structorizer,	 2017)	 is	 a	 little	 tool	which	 is	 released	under	 the	 terms	of	 the	General	 Public	 License	 (GPU)	 as	
published	by	the	Free	Software	Foundation.	This	application	is	constantly	upgraded	and	developed,	especially	
by	its	original	author	Bob	Fish.	Besides	creating	a	diagram,	it	also	allows	to	generate	a	source	code.		

Based	on	 the	algorithmization	of	 a	 task	 that	ends	 in	an	appropriate	 representation	of	 the	algorithm,	 the	
student	 continues	by	 its	 implementation,	 that	 is,	 by	programming.	Diagrams	are	 an	 important	part	 of	 every	
software	development	documentation	and	help	students	better	understand	the	structure	of	the	code	itself,	as	
well	as	easier	to	understand	the	syntax	of	the	control	structure	of	the	 language	architecture.	As	reported	by	
the	 Shrag	 (1978),	 the	 programmer	 can	 more	 easily	 see	 the	 link	 between	 the	 operations	 in	 the	 designed	
algorithm,	because	the	graphical	form	is	much	more	comprehensible	than	the	code	itself.	Our	main	goal	is	to	
increase	 the	 success	 of	 students	 and	 help	 them	 better	 understand	 algorithmization.	 We	 see	 a	 solution	 in	
providing	 immediate	 feedback,	 independent	 of	 the	 place,	 time	 and	 a	 competent	 person	 (teacher/tutor).	
Therefore,	 following	a	 thorough	analysis	of	 the	 suitability	of	existing	 software	solutions,	we	have	decided	 to	
supplement	Structorizer	application	with	a	modulus	that,	after	developing	NS	diagrams	and	their	subsequent	
generation	into	the	C	programming	language,	will	allow	run	it	through	a	compiler.	Thus,	the	student	receives	
immediate	 feedback	whether	 the	designed	algorithm	 is	 functional	 or	 not.	As	with	programming,	 testing	 can	
lead	 to	 the	 use	 of	 a	 trial	 and	 error	 method	 in	 order	 to	 achieve	 the	 correct	 outcome	 and	 not	 a	 targeted	
modification	of	the	algorithm	based	on	knowledge.	We	also	consider	this	method	appropriate	during	training.	
In	 the	end,	 the	 student	gets	 the	 right	 result	by	a	 suitable	modification	of	 the	algorithm,	and	 in	 this	process,	
he/she	reveals	the	solved	connections	and	facts	in	an	interactive	manner.	

3 Results	and	discussion	
Structorizer	 is	 all	 written	 in	 Java.	 When	 designing	 the	 application,	 the	 model-view-controller	 (MVC)	 design	
pattern	 was	 partially	 used,	 which	means	 there	 is	 a	 hint	 of	 a	 split	 structure	 for	 the	 graphical	 interface	 and	
application	logic.	Because	the	project	is	open-source,	several	different	companies	and	professionals	worked	on	
it,	providing	many	packages.	Everyone	who	designed	a	modulus	developed	a	custom	package	with	its	classes	
and	own	implementation.	As	a	result,	this	project	has	become	quite	unclear	after	a	certain	time.	Each	method	
is	implemented	within	the	related	class.	Existing	implementation	of	our	C	language	generator	is	again	only	one	
class,	in	which	all	the	methods	necessary	for	proper	code	generation	are	implemented.	

As	 specified	 in	 the	 documentation	 for	 Strutorizer	 (2017),	 the	 GUI	 (Graphical	 User	 Interface)	 is	 quite	
minimalist	and	easy	to	use	(see	Fig.	2).	It	is	built	of:	

• a	Toolbar	offering	shortcuts	to	features	and	functions,	
• the	Menu,	which	provides	most	of	what	the	Toolbar	does	and	some	more	features,	
• the	Work	Area,	which	is	where	you	create	your	NS	diagram,	
• the	 Report	 List	 where	 the	 Analyser	 component	 (if	 activated)	 writes	 warnings	 on	 dubious	 diagram	

contents,	and	
• the	 Arranger	 Index,	 which	 lists	 all	 diagrams	 currently	 held	 in	 the	 Arranger	 tableau	 in	 lexicographic	

order	(main	programs	first,	then	subroutines)”.	
The	user	interface	of	Structorizer	application	was	changed	only	slightly.	The	“Generate	C”	button	is	added	

to	the	diagrams	placed	in	the	Arranger.	This	button	starts	generating	the	code	for	all	diagrams	and	joins	them	
into	one	code	(Fig.	3).	The	code	is	then	displayed	in	a	new	window	(Fig.	4).	

In	modeling	 diagrams	 in	 Structorizer	 and	 subsequent	 export	 of	 the	 code,	 we	 encountered	 a	 number	 of	
factors	 that	 are	 not	 perfectly	 implemented.	 It	 is	 not	 the	 subject	 of	 this	 paper	 to	 detail	 these	 because	 their	
modification	would	mean	rewriting	the	entire	application,	but	we	want	to	point	out	that	we	do	not	see	this	as	a	

																																																																																																					 	
	

	 	 77	

R&E-SOURCE	http://journal.ph-noe.ac.at	
Open	Online	Journal	for	Research	and	Education	
Special	Issue,	December	2017,	ISSN:	2313-1640	
	

negative	fact	because	of	our	goal.	After	the	code	has	been	generated,	the	student	upon	his/her	knowledge	has	
to	read	and	modify	the	code	into	its	executable	form,	he/she	ultimately	learns	again	-	specifically	C	syntax.		

We	 illustrate	 the	 functionality	 of	 the	 application	 and	 its	 work	 with	 a	 simple	 algorithm	 of	 calculating	 a	
quadratic	 equation	 roots	 on	 a	 set	 of	 real	 numbers.	 In	 the	 main	 body	 of	 the	 program	 (function	 “main”),	
quadratic	equation	coefficients	A,	B	and	C	are	read.	The	next	step	is	calculating	the	value	of	the	discriminant.	
Solution	is	dependent	on	a	discriminant.	If	the	discriminant	is	positive,	then	there	are	two	distinct	roots.	If	the	
discriminant	 is	 zero,	 then	 there	 is	 exactly	 one	 real	 root,	 sometimes	 called	 a	 repeated	 or	 double	 root.	 If	 the	
discriminant	is	negative,	then	there	are	no	real	roots.	Rather,	there	are	two	complex	roots.	The	user	is	asked	to	
define	 the	 data	 type	 of	 variable	 only	 in	 the	 resulting	 code.	 This	 call	 is	 in	 the	 form	 of	 a	 comment	 that	 is	
generated	 at	 the	 beginning	 of	 each	 function.	 This	 comment	 can	 be	 seen	 in	 Fig.	 4.	 It	 begins	 with	 the	 word	
“TODO:”	and	below	are	listed	all	the	variables	that	need	to	be	declared.	The	control	variables	required	for	the	
"for	loop"	will	not	join	the	above	mentioned	variables.	This	may	also	be	because	compilers	based	on	the	C99	
standard	support	the	definition	of	the	variable	directly	in	the	“for	loop”.	

One	of	the	limitation	is	the	need	to	write	mathematical	operations	as	they	are	written	in	the	programming	
language.	If	the	mathematical	functions	are	used,	the	header	files	are	not	generated.	This	error	arises	because	
the	export	counts	only	the	header	file	"stdio.h",	which	is	added	automatically.

	

	
	

Fig.	2:	Structorizer	Graphics	Interface	

Toolbar

Menu

Work area

Report list

Arranger index

																																																																																																					 	
	

	 	 78	

R&E-SOURCE	http://journal.ph-noe.ac.at	
Open	Online	Journal	for	Research	and	Education	
Special	Issue,	December	2017,	ISSN:	2313-1640	
	

	
Fig.	3:	Arranger	of	the	diagrams	for	calculating	the	roots	of	the	quadratic	equation	

 Fig. 4 Exported code based on diagrams and the code modified into executable form

Button for generating
code

Representations of
compilation errors

Button for compilation
and running

																																																																																																					 	
	

	 	 79	

R&E-SOURCE	http://journal.ph-noe.ac.at	
Open	Online	Journal	for	Research	and	Education	
Special	Issue,	December	2017,	ISSN:	2313-1640	
	

	

Fig.	5	Demonstration	of	functionality	

4 Conclusion	
The	application	was	provided	to	students	for	pilot	testing	in	the	academic	year	2017/2018.	The	main	goal	is	to	
fine-tune	 the	 functionality	 of	 the	 application	 to	 a	 satisfactory	 state,	 as	we	 already	 know	 that	 students	 have	
drawn	 on	 a	 few	 problems	 when	 using	 it.	 On	 the	 other	 hand,	 we	 have	 registered	 positive	 feedback	 on	 the	
application.	Consequently,	our	goal	is	to	carry	out	a	pedagogical	experiment	and	test	whether	the	use	of	such	
an	 application	 will	 increase	 the	 IT	 competencies	 and	 skills	 of	 the	 students	 for	 the	 purpose	 of	 which	 the	
application	was	created.	

Acknowledgment	
The	author	gratefully	acknowledges	the	contribution	of	the	KEGA	Grant	Agency	of	the	Slovak	Republic	under	
the	KEGA	Project	016UCM-4/2017.		
Our	special	thanks	go	to	Marcel	Forgáč	for	technical	support	in	development	and	testing	the	application.	

References	
Avancena,	 T.,	 Nishihara,	 A.	 and	 Ch.	 Kondo.	 2015.	 Developing	 an	 Algorithm	 Learning	 Tool	 for	 High	 School	
Introductory	 Computer	 Science.	 Education	 Research	 International	 02/2015;	 (Article	 ID	 840217).	 11	 pp.	
Available	on:		http://www.hindawi.com/journals/edri/2015/840217/	
Diehl,	S.	2007.	Software	visualization:	Visualizing	the	Structure,	Behaviour,	and	Evolution	of	Software.	Springer	
New	York,	2007.	
Duffy,	 J.	 2017.	 The	 Best	 Flowchart	 and	 Diagramming	 Apps	 of	 2017.	 [online].	 [cit.	 15.10.2017].	 Available	 at:	
https://www.pcmag.com/article/349791/the-best-flowchart-and-diagramming-apps	
Fairbanks,	 L.	 2017.	 The	 Best	 Flowchart	 Software.	 [online].	 ©2017	 [cit.	 15.10.2017].	 Available	 at:	
http://www.toptenreviews.com/business/software/best-flowchart-software/	
Herout,	L.	2016.	Elektronické	studijní	opory	v	prostředí	terciárního	vzdělávání.	Praha:	powerprint.	ISBN	978-80-
7568-016-7.	
Jurinová,	 J.	 2013.	 Rozvoj	 kognitívnych	 vedomostí	 za	 využitia	 multimediálnej	 učebnej	 pomôcky.	 In:	 XXVI.	
DIDMATTECH	 2013	 NEW	 TECHNOLOGIES	 IN	 SCIENCE	 AND	 EDUCATION.	 Gyor	 :	 University	 of	 West	 Hungary,	
Tribun	EU,	s.r.o.,	2013.	s.	136-141.	255	s.	ISBN	978-963-334-184-1.	
Jurinová,	J.	2015.	Instruction	Videos	for	Psychomotor	Skills	Development.	In:	R&E-source	:	časopis	pre	výskum	a	
vzdelávanie.	Special	issue	4,	december	(2015),	pp.	129-133.	ISSN	2313-1640.	
Jurinová,	J.	2016.	Identifying	the	difficult	thematic	units	for	increasing	the	specific	IT	competences	and	skills	in	
the	field	of	algorithmization	and	programming.	In	:	Proceedings	of	International	Scientific	Conference	SCHOLA	
2016,	Pedagogy	and	Didactics	 in	Technical	Education,	12th	 International	Scientific	Conference	on	Engineering	
Pedagogy,	Published:	in	2017,	CVUT	Prague.	Editors:	Pavel	Andres,	Roman	Hrmo	et	al.	2017,	pp.	149-154,	ISBN:	
978-80-01-06112-1.	
MeraBheja,	 2017.	 19	 Best	 Free	 Tools	 for	 Creating	 Flowchart.	 [online].	©2017	 [cit.	 15.10.2017].	 Available	 at:	
http://merabheja.com/best-free-tools-for-creating-flowcharts/	
Schrag,	 Cornelia	M.	 Yoder	 and	Marilyn	 L.	 1978.	 Nassi-Shneiderman	 Charts:	 An	 Alternative	 to	 Flowcharts	 for	
Design.	New	York:	ACM	SIGSOFT/BIGMETRICS	Software	and	Assurance	Workshop.	
Structorizer.	[online].	©2017	[cit.	15.10.2017].	Available	at:	http://structorizer.fisch.lu/	
Urquiza-Fuentes,	 J.	 and	 J.	 A.	 Velázquez-Iturbide.	 2009,	 A	 survey	 of	 successful	 evaluations	 of	 program	
visualization	 and	 algorithm	 animation	 systems.	 ACM	 Transactions	 on	 Computing	 Education	 (TOCE)	 –	 Special	
Issue	 on	 the	 5th	 Program	 Visualization	 Workshop.	 Vol.	 9,	 No.	 2,	 pp.	 1–21.	 Available	 on:	
http://www.researchgate.net/publication/220094505		

