
Conceptualizing a Pedagogical CAS
for Algebraic Manipulation of

Expressions

Rein Prank, Marina Lepp

prank@ut.ee,

marina.lepp@ut.ee

University of Tartu (Estonia)

mailto:prank@ut.ee
mailto:Marina.lepp@ut.ee
mailto:Marina.lepp@ut.ee

1. Introduction

We assume that using pedagogical CAS (PeCAS)
- the student solves tasks step by step,

- the system provides hints,
- the system checks correctness of the student’s steps, provides
feedback about errors and requires correction of them,
- the system records the student’s solutions and information
about errors

1. Introduction
2) Content

The paper has the following Sections:
1. Introduction
2. Some existing pedagogical CAS
3. Working modes for the student and solution interface
4. Possible features of error checking
5. Possible applications, outputs and inside of automated

Solver.
6. Recording and visualization of information about the

results of students’ work.
7. Some ideas for automated assessment
8. Random generation of tasks.
9. Summary of our most important recommendations

1. Introduction
3) Input-based and Rule-based dialog

When the students solve an expression manipulation task, they
should at each solution step

1) Choose a certain operation in the algorithm (or some
simplification or calculation rule known earlier),

2) Select the operands for this operation,

3) Replace them with the result of the operation.

Part of the information created during substeps 1-3 can be
considered as redundant.

• The written solutions usually record only the third substep.
The same can be implemented in a PeCAS in form of an
Input-based solution dialog.

• But it is also possible to implement the completely orthogonal
Rule-based approach where the student performs only first
two substeps and the result of the step is computed
automatically.

2. Examples of PeCAS
1) Aplusix

For each step, the student copies the previous expression
(equation, …) to the next line and then uses the expression
editor to transform it into the result of the step

2. Examples of PeCAS
2) MathXpert

1) The student marks a subexpression

2) The program displays a menu with rules/commands
applicable to the marked subexpression

3) The student selects an item from the menu and the program
applies the corresponding rule/command

2. Examples of PeCAS
3) T-algebra (Tartu, 2004-2008)

1-2) The student selects the rule and marks operands
3) The student enters the expression that replaces the marked
part

2. Examples of PeCAS
4) Algebraic Manipulation Assistant for Logic (Tartu 1990, …)

1) The student marks a subformula

2) The student
enters a formula that replaced the marked part (Immediate
mode) or
selects a rule from the menu (Rule mode)

We have modified the program in 2003 and 2013.

3. Working modes and solution
interface

3.1 Input mode and Rule mode
1) Both are necessary

WB/BB first stage in learning – Input mode

WB/BB second stage in learning– Rule mode

Learning of algorithms – Rule mode

Solving more creative tasks – Rule mode

Assessment – Input mode

This brings us to recommendation to
implement in a PeCAS both modes where this is possible.

Thereby the teacher should have possibility to fix the working
mode for every task

3.1 Input mode and Rule mode
2) Teacher-chosen sets of rules

It is not difficult to design software for Rule-based work in a
manner that enables the teacher to specify what set of rules is
available

Then the teacher is responsible for solvability of tasks and could
first solve each task himself.

• If the software contains an automatic Solver then the
existence of a solution can be approved automatically.

3.1 Input mode and Rule mode
3) Long step problem

Input mode does not regulate the length and content of the
steps.

• The next line can be result of several parallel or consequent
conversion steps made by the student.

• It is possible to enter only the final answer obtained
using paper and pencil, making calls to some CAS or even
stealing an expression from the screen of the neighbor.

• The teacher component of environment should enable at
least a comfortable and quick way to look at the student
solutions

• But the program could also protest against the student step
when it jumps over too many stages of the solution algorithm
or covers too many steps of the Solver.

3.2 Marking of operands
1)

Some programs

(MathXpert) use marking of operand(s) substantially but

some others (Aplusix) do not use it at all.

3.2 Marking of operands
2) One example

In 1989 we tried first time Algebraic Manipulation Assistant with
students.

At each step the student entered the next line and
the program checked the equivalence with previous line.

The students who misinterpreted the order of operations
complained that the program gives buggy error messages for
example after replacing X~Y in X~YZ by X&Y X& Y.

To be able to diagnose misunderstanding of the order of
operations, we decided

to add a substep of marking of the subformula for modification
before entering the result .

3.2 Marking of operands
3) Precise marking?

• MathXpert does not require precise marking of operand(s) .
If the user marks a subexpression then MathXpert proposes a
list of conversion rules that can be applied to the marked
subexpression or to some its subexpression(s).

• Precise marking enables to apply the conversion precisely to
selected operands

• Requiring of precise marking enables diagnosing of some
errors

Technically the precise marking requires implementation of
multi-marking i.e. marking of several separate subexpressions

4. Error checking: content and timing

4. Error checking: content and timing
1)

• Necessary and possible/programmable content of error
checking depends on the working mode

• Some of the messages are understandable only when the
student has entered their matter explicitly

• The main problem is that
many concrete checks are desirable
but in actual working mode the program does not get enough
information for understanding the roots of the error

4. Error checking: content and timing
2) Two alternatives

If we want to diagnose better than „not equivalent“ then we
should choose between two alternatives:

a) Require from the student entering not only the result but
also some additional information about the meaning of the
step or

b) Design and implement
much more intelligent analyse algorithms

4.1 Correctness of marking
 • In case of PeCAS we can have didactical goals that

contain training of punctuality or testing of correct
understanding of the order of operations

• For such purposes we need the design where the editor
enables the student to mark also incorrect pieces of the
expression but displays then corresponding error
message

• We have seen that the students need such training at
least when they work with new algebraic operations
(Propositional Logic)

• Training of perfect handling of syntax of expressions is
also useful in Basic school.

4.2 Syntax of entered expressions

• In ‘exercise modes’ the programs usually require
correction of syntax errors before checking of
equivalence and further issues of correctness

• In general the ‘test modes’ try to mimic the paper and
pencil tests. We recommend obligatory correction of
syntax errors also for the ‘test modes’.

• Otherwise the program diagnoses incidental slips with
syntax but not the more important issues

4.3 Equivalence checking
1) Limits for equivalence checking (1)

D. Richardson (1968) + Y. Matiyasevich (1970):
Let 𝐹 denote the class of functions in one real variable that can
be defined by expressions constructed from
the variable 𝑥, the integers and the number 𝜋,
combined through addition, subtraction, multiplication, 𝑠𝑖𝑛 and
𝑎𝑏𝑠 (absolute value).
There is no algorithm for deciding for an arbitrary given
expression 𝐸(𝑥) from the class 𝐹 whether the equality
 𝐸(𝑥) = 0
holds identically for all values of 𝑥.

• Equivalence is also undecidable because
𝐴(𝑥) ≡ 𝐵(𝑥) iff 𝐴(𝑥) − 𝐵(𝑥) ≡ 0
• Absolute value can be replaced by functions that are

necessary for trigonometry: |𝑥| = 𝑠𝑞𝑟𝑡(𝑥2)

4.3 Equivalence checking
2) Limits for equivalence checking (2)

A.Church (1936):

There is no algorithm that could decide the
Entscheidungsproblem (whether a formula of predicate logic is a
consequence of a finite set of given formulas).
This implies that there is no algorithm for checking the
equivalence of formulas of predicate logic.

Because of these two theorems

MathXpert and

Predicate part of Algebraic Manipulation Assitant

use only Rule mode

4.3 Equivalence checking
3) Limits for equivalence checking (3)

The strongest known positive result for real numbers,
Macintyre and Wilkie (1996):

If Schanuel’s Conjecture (for R) is true then first order theory
R, 0, 1, +, -, , exp,< is decidable.

• Schanuel’s Conjecture is:

If z1,...,zn are real numbers linearly independent over Q, then the
extension field Q(z1,..., zn, exp(z1),...,exp(zn)) has transendence
degree of at least n (over Q).

• Only the proof and not the decision algorithm depend on
Schanuel conjecture.

4.3 Equivalence checking
4) Equivalence checking mechanisms

PeCAS use different mechanisms for equivalence checking.
1) Many systems contain automated Solvers and often the

final answer can be considered as canonical form of the
expression.
For checking of equivalence the program can then
compare the answer calculated from the previous and
from the new line

2) Some other systems make
calls to corresponding commands of general-purpose CAS
or include equivalence checking or simplification modules
from computer algebra libraries

3) Some programs use evaluation of variables by random
values.
With high probability the mistake causes essentially
changed value already by first random evaluation. This
can give results even in theoretically unsolvable cases. But
unfortunately the evaluation approach does not have good
modifications for the case of equations/inequalities etc.

4.3 Equivalence checking
5) Equivalence with hidden assumptions

Result of testing of equivalence by a CAS or random
evaluation can be not satisfying. These methods ignore
differences on the sets of measure zero.

• They accept for example reduction of 𝑥
2
𝑥 to 𝑥 although

the expressions are really not equivalent
• For some parts of the syllabus such conversions are

acceptable and even the main objects of learning
• The same time they can cause problems in other tasks, for

example to generate extraneous solutions of equations
• Chuaqui and Suppes recommend explicit recording of

assumptions (in our case: x ≠ 0) that are necessary for
equivalence. MathXpert has adopted such approach.

4.4 Checking of solution economy and
conformity with algorithm

1) Motivation

• Usually the PeCAS check that the student steps are ‘correct’
but do not evaluate their expediency

• But the students tend to think that if the program accepted
the step then it is reasonable

• When we started to use Algebraic Manipulation Assistant
with first semester students we saw that the solution files
were several times longer than expected.
In final test of autumn term 2011 the average number of steps
was 44.0 instead of the normal 15-25 steps at most

• In some didactical situations we need checking of expediency
of the steps

4.4 Economy and conformity with algorithm
2) Absolute economy (of the step)

Consider an ‘absolute’ measure of economy that can be used in
any working mode.

• If we have an optimizing Solver that uses some fixed set of
conversion rules then we can find and compare shortest
solutions before and after the step: how much the solution
has decreased/increased

• Unfortunately an optimizing Solver would work slowly

• But if we replace the optimizing Solver by the Solver that
implements the standard algorithm for the task then the loss
is not so big

4.4 Economy and conformity with algorithm
3) Comparing a step with the algorithm

This is quite easy in Rule mode. The program can use the Solver
and check whether the actually used rule corresponds to the
algorithm (or is an appropriate simplification rule).

• First author used such approach in disjunctive normal form
exercises with first-term students. The analyzer was
implemented as a supplementary program that evaluated
every step in student solutions.

• After making the analyzer available for the students in
autumn 2012 we saw that in comparison with 2011
the average number of algorithmic mistakes in the normal
form task at final test decreased from 9.1 to 3.0 and
the average number of steps from 44.0 to 27.3 (the optimal
length of solutions was about 20 steps).

4.4 Economy and conformity with algorithm
4) Comparing with the algorithm in Input mode

The situation is more complicated in Input mode. But

• The Solver can calculate what rule(s) is (are)
recommended by the algorithm

• For evaluation of student’s step it is possible to check
whether the goal of recommended step is reached

Such checks require complicated modeling of all
conversion rules and are much more complex to program
than simple comparison of the rules.

But this is the place where analyze of goals of any new
conversion improves the quality of feedback

4.5 Error classification

Big programs have hundreds of different error messages

• Classification of errors into more general categories enables
- to get overview of strong and weak sides of the student
- automated assessment using penalties for each category

• The student and teacher programs could contain means for
display of error tables in both views:
- categories
- concrete error messages (ordered by number of
occurrences)

4.6 Moment of checking

Most PeCAS’s check the input when the student completes the
(sub)step and pushes corresponding button. By pushing this
button the student takes some responsibility

• It is possible to reduce the moment of responsibility in
exercise classes. Aplusix verifies syntax and equivalence
continuously. But such dialog does not create space for
feedback about the error

• Some programs implement so called ‘Test mode’ where
correctness is checked only after finishing the task (or test).
We recommend for tests also checking the correctness
always before next (sub)step

• “… if we start with an educational purpose,
and enunciate some simple design principles
that more or less obviously follow from that
purpose, these principles have ramifications
that run through to the computational core of
the system, so that it is impossible to achieve
ideal results by tacking on some additional
“interface” features to a previously existing
computation system”

 Michael Beeson

5. Features and role of an automated solver

• The automated solver of a PeCAS
– should follow the ‘white-box’ principle

– should produce step-by-step solutions similar to
pencil-and-paper ones

– should be cognitive faithful
• should solve the problem in the same way as the

student should

– should accept all solution paths (calculated
according to the algorithm and all other as well)

5. Features and role of an automated solver

• The automated solver of PeCAS should
implement the solution algorithm for every
problem type

• For example, algorithms in T-algebra are
implemented as an ordered list of rules
– algorithm for linear equation solving

• rules for simplification (not algorithm steps: Add/Subtract 0, etc.)

• rules for arithmetic operations and manipulation with numbers
(Extend, Reduce, etc.)

• rules, which correspond to pencil-and-paper algorithm steps
– rule Multiply/Divide both sides for multiplying (removing fractions)

– rule Open parentheses

– rule Add/Subtract numbers

– rule Combine like terms

– rule Move terms to other side

– rule Multiply/Divide both sides for division

5. Features and role of an automated solver

5. Features and role of an automated solver
T-algebra automated solver

• The automated solver
– examines this list of rules from the beginning

– finds the first rule that it can apply

– applies this rule

– then examines this list again from the beginning

– finds new (or the same) rule

– applies this rule

– …

• This cycle continues until no more rules can be applied
or the expression/equation is in the solved form

• This is the way the automated solver gets an answer
to the problem

5. Features and role of an automated solver
T-algebra automated solver

• The automated solver checks whether it can apply the
rule by trying to find suitable operands for this rule

• If it finds operands, then it can apply the rule to these
operands

• After the operands are found, the expert module
calculates some necessary parts of the result
depending on the input mode, puts them together
with unchanged parts and gets new
expression/equation

5. Features and role of an automated solver
T-algebra automated solver

5. Features and role of an automated solver

The use of results of the work of the automated solver
1. Testing of solvability of the task by available conversions.
2. Evaluation of suitability of the task (length of the solution,

necessary conversions, form and values of intermediate
results) by the teacher.

3. Evaluation of appropriateness of the final answer by the
teacher.

4. Automated selection of tasks by random generation of initial
expressions (ensuring given length of solution, inclusion of
necessary conversions, exclusion of undesired values, etc.).

5. Display of step hints or execution of (a part of) the next step
at the student’s request.

6. Demonstration of the whole solution (from the begin or from
the point reached by the student).

7. Checking of equivalence of expressions/equations/….

5. Features and role of an automated solver

The use of results of the work of the automated solver
8. Localization of the erroneous components in the entered result of

the step.
9. Recognizing the operation that was executed with mistake by the

student (in the Input mode).
10. Evaluation of expediency of the step (comparing the lengths of

standard solutions before and after the step).
11. Comparison of executed step (rule) with the step of the standard

algorithm.
12. Comparison of the entered result of the step with the result of

application of the rule that the student claimed to have applied.
13. Global evaluation of solution economy by comparing the length of

the student’s solution with the standard solution (mainly in the Rule
mode).

14. Checking whether the required final form is reached.
15. Generating tasks that require application of given conversion rules.

• In PeCAS the checking of solutions and
preparing of data for decisions should be done
in real time

• A PeCAS should save the solutions and
detected errors for further analysis by the
teacher

• It is also possible to record the time
characteristics of the work

6. Recording and presenting information
about students’ work

• Usually the programs enable to restore the
picture for subsequent analysis by the student
and the teacher

6. Recording and presenting information
about students’ work

Created solutions

• The designers of PeCAS should decide
whether to maintain only one branch of
solution or more during the solution dialog

• PeCAS should save the cancelled steps too and
display all branches of the solution tree for
analysis

6. Recording and presenting information
about students’ work

Created solutions - branches

• Next important facility is recording and
demonstration of error situations and help
requests

6. Recording and presenting information
about students’ work

Error situations

• The statistics should include a variety of information:
– number and designation of problems that were solved by

the student
– number of errors (total and separately for each task)
– number of instances of help use
– number of solution steps created
– time characteristics (begin, end, duration) of each task

• The statistics enables to evaluate
– the student’s general performance

• speed of work
• success at different kinds of tasks
• number of errors

– working habits
• using or ignoring help functions
• completing all tasks or giving up in difficult cases
• pauses between tasks

6. Recording and presenting information
about students’ work

Summarized statistical information

6. Recording and presenting information
about students’ work

Summarized statistical information

6. Recording and presenting information
about students’ work

Error/help usage counters by categories and tasks

• table of solved/unsolved tasks
– rows for each student and columns for each task

• table of step counts
– numbers of steps in each (finished or unfinished) solution

• table of solution times
– time for each task (finished or unfinished)

• table of error counts
– numbers of errors made in each task

• two overview tables of error types in tasks
– the rows display the categories of errors in the first table

and particular error messages in the second table, the
columns correspond to tasks

6. Recording and presenting information
about students’ work

Overview of the work of group of students

7. Assessment facilities
1) What aspects?

At least the following three aspects should be taken into account
in automated assessment:

1) What part of the task is solved (if the solution is incomplete),

2) Penalties for errors,

3) Solution economy/conformity with the algorithm.

7. Assessment facilities
2) How to count ?

1) What part of the task is solved (if the solution is
incomplete),

2) Penalties for errors,

3) Solution economy/conformity with the algorithm.

1) numerical weights of the stages of the algorithm and a
measure inside of some stages

2) basic penalties for each error category and penalty
calculation formulas

3a) Rule-based modes - actual number of steps /
information from the teacher or Solver

3b) Evaluation of each step & penalties for inexpedient
conversions

8. Random generation of tasks
1) What do we need?

The teacher tools should allow specifying the generating
parameters so that the tasks have desired pedagogical
properties:

- use of certain conversion rules,
- opportunities for making certain errors,
- have reasonable probabilities for choices to be made by the
student,
- require approximately equal amount of work from different
students

8. Random generation of tasks
2) How to generate?

Automated Solver should be used much more

• The properties of exercises with short solutions can easily be
checked immediately or be built in using reverse engineering.

• For the properties of exercises with long solutions, the most
natural way seems to be: to generate an initial expression,
apply the automatic Solver and check whether the solution
has the desired properties.

• The properties are usually quite trivial conditions about
existence or number of some elements in the solution.

Many PeCAS have Solver, but

Solver is used locally for step hints and does not record the
solution in a form that can be used for analysis

9. Recommendations

MathXpert and Aplusix are classic examples of
solution environments that implemented the Rule-
based and the Input-based dialog in a very natural
way.
MathXpert enables to experiment with solution
ideas without performing the calculations by hand.
Aplusix gives the student feedback about technical
correctness of the solution steps.
Designing new environments today we should think
what could be added to these pioneering
environments.

9. Main recommendations
1. Solution environments should implement both the Input and the Rule mode.

2. It is time to give feedback about the expediency of the step and not be
restricted to applicability of the rule or equivalence to previous line.

3. The designers should decide whether to use a
step dialog that embodies intention-related components or to
implement intelligent techniques for guessing the ideas behind the steps

4. The automated Solver should produce step-by-step solutions similar to
pencil-and-paper solutions. The expert module should be intelligent enough
to check the knowledge and skills of the student (the student’s solution steps
and answers), understand the student’s mistakes, offer feedback and give
advice.

5. Teachers need reasonably generalized and visualized information about the
performance of individual students and whole class.

6. Teachers need Computer-Aided Assessment. The PeCAS should contain tools
for appointing task weights, error penalties, penalty counting formulas, etc.

7. Teachers need random generation of tasks with necessary pedagogical
properties, including the properties of solutions

References
• Anderson, J.R. (1988). The expert module. In: Polson, M., Richardson, J. (eds.): Handbook of Intelligent Training

Systems. Hillsdale, NJ: Erlbaum, 1988 21-53.
• M.Beeson. Design Principles of Mathpert: Software to support education in algebra and calculus, in: Kajler, N. (ed.)

Computer-Human Interaction in Symbolic Computation, pp. 89-115, Springer-Verlag, Berlin/ Heidelberg/ New York
(1998).

• Brna, P., Warr, K., Chiam, S-T. and Pain, H. Learning to Diagnose Algebra Errors. In Proceedings of the Seventh
International PEG Conference, Volume 1, pp40-47, Edinburgh: Moray House. 1993.

• B.Buchberger. Should Students Learn Integration Rules? ACM SIGSAM Bulletin, 24, 1, 10-17, (1990)
• S. Burris, K.Yeats, The Saga of the High School Identities, Algebra Universalis, 52, No.2–3, (2004), pp.325–342.
• R. Chuaqui, P. Suppes. An equational deductive system for the differential and integral calculus. In: P. Martin-Löf,

G.Mints (Eds) Proceedings of International Conference on Computer Logic, Tallinn,1988, LNCS 417, 1990, 25-49
• A.Church. A note on Entscheidungsproblem. Journal of Symbolic Logic, 1, 1936, 40-41.
• R. Dedekind. Was sind und was sollen die Zahlen?”, 1888
• T.Fisher. Probabilistic Checks for the Equivalence of Mathematical. A Senior Thesis by. Travis Fisher. 1999

www.cse.unl.edu/~sscott/students/tfisher.pdf
• G. H. Gonnet. Determining Equivalence of Expressions in Random Polynomial Time. Proceedings of the 16th ACM

Symposium on the Theory of Computing, 1984, 334-341.
• R. Gurevič. Equational Theory of Positive Numbers with Exponentiation is Not Finitely Axiomatizable. Annals of

Pure and Applied Logic, 49, 1, 1990, 1-30.
• H.U.Hoppe. Deductive error diagnosis and inductive error generalisation for intelligent tutoring systems. Journal

of Artificial Intelligence in Education, 5, 1994, 27-49.
• Issakova, M., Lepp, D., Prank, R.: T-algebra: Adding Input Stage to Rule-Based Interface for Expression

Manipulation. The International Journal for Technology in Mathematics Education. 13, 89--96 (2006)
• Macintyre, A.J.Wilkie. On the decidability of the real exponential field. P. Odifreddi (ed.) Kreiseliana: about and

around Georg Kreisel. A.K.Peters, 1996. 441-467.
• MathSpace. https://mathspace.co/
• Nicaud, J., Bouhineau, D., Chaachoua, H.: Mixing microworld and cas features in building computer systems that

help students learn algebra. International Journal of Computers for Mathematical Learning. 5, 169--211 (2004)

• R. Prank, H.Viira. Algebraic Manipulation Assistant for Propositional Logic. Computerised Logic Teaching Bulletin,

Vol.4, No.1, St Andrews Univ, 1991, 13-18.
• R. Prank. Using Computerised Exercises on Mathematical Logic. Informatik-Fachberichte, Vol. 292, Springer-Verlag,

1991, pp. 34-38.
• R.Prank, V.Vaiksaar. Expression manipulation environment for exercises and assessment. 6th International

Conference on Technology in Mathematics Teaching. Volos-Greece, October 2003. 342-348.
• Prank, R., Issakova, M., Lepp, D., Tõnisson, E., Vaiksaar, V.: Integrating Rule-based and Input-based Approaches for

Better Error Diagnosis in Expression Manipulation Tasks. In : Shangzhi Li, Dongming Wang, Jing-Zhong Zhang
(eds.): Symbolic Computation and Education. 174--191. World Scientific, Singapore (2007)

• Prank, R., Lepp, D. Tools for Acquiring Data about Student Work in Interactive Learning Environment T-Algebra. In:
Aleven, Vincent; Kay, Judy; Mostow, Jack (Eds.), Intelligent Tutoring Systems 2010. LNCS 6095, pp. 396-398.

• R.Prank. Software for Evaluating Relevance of Steps in Algebraic Transformations In: Intelligent Computer
Mathematics: Conferences in Intelligent Mathematics, Bath, July 8-12, 2013. (Toim.) Carette, J., Aspinall, D., Lange,
C., Sojka, P., Windsteiger, W. Lecture Notes in Artificial Intelligence; 7961, Springer, 2013, 374 - 378.

• R. Prank. A tool for evaluating solution economy of algebraic transformations. Journal of Symbolic Computation,
61-62, 2014,100 - 115.

• Ravaglia, R., Alper, T., Rozenfeld, M., and Suppes, P. Successful pedagogical applications of symbolic computation.
In: Kajler, N. (ed.): Computer-Human Interaction in Symbolic Computation. Berlin Heidelberg New York: Springer-
Verlag, 1998, 61-88.

• D.Richardson. Some unsolvable problems involving elementary functions of a real variable. J.Symbolic Logic 33,
1968, 514-520.

• D.Richardson. Solution of the Identity Problem for Integral Exponential Functions. Zeitschrift für mathematical
Logik und Grundlagen der Mathematik. Vol. 15, 1969, 333-340.

• Sangwin, C.J. (2005). Making Mathematical Distinctions In CAA With Computer Algebra. Proceedings of the 7th
International Conference on Technology in Mathematics Teaching, Vol. 1. Bristol, UK 292-299.

• D. Sleeman, J. S. Brown (Eds). Intelligent Tutoring Systems. Academic Press, 1982.
• Walden, J. (1997). Mathpert Calculus Assistant: User’s Guide. Santa Clara, USA: Mathpert Systems, an Imprint of

Recognix.

