
Explorations with the Barycentric Formula for
Polynomial Interpolation

Dennis Pence

Kalamazoo, Michigan, U.S.A

July 4, 2014

Other Representations for Polynomials
Students in high school deal almost exclusively with polynomials in
the power form.

P(x) = anxn + an−1xn−1 + · · ·+ a1x + a0

This is fine if you are evaluating the polynomial near zero (which
they usually are doing) and when the degree is low (usually n = 2
or 3). This form is not appropriate for x = 50 or 200 or for much
higher degrees.

In Calculus we introduce the Taylor polynomials, which have a
shifted power form.

Pn(x) = b0 + b1 (x − a) + b2 (x − a)2 + · · ·+ bn (x − a)n

where bi =
f (i) (a)

i !

Some of my students insist on “multiplying this out” and reversing
the order, so that they really believe it is a polynomial.

Other Representations for Polynomials
Students in high school deal almost exclusively with polynomials in
the power form.

P(x) = anxn + an−1xn−1 + · · ·+ a1x + a0

This is fine if you are evaluating the polynomial near zero (which
they usually are doing) and when the degree is low (usually n = 2
or 3). This form is not appropriate for x = 50 or 200 or for much
higher degrees.

In Calculus we introduce the Taylor polynomials, which have a
shifted power form.

Pn(x) = b0 + b1 (x − a) + b2 (x − a)2 + · · ·+ bn (x − a)n

where bi =
f (i) (a)

i !

Some of my students insist on “multiplying this out” and reversing
the order, so that they really believe it is a polynomial.

Other Representations (cont.)

Pn(x) = b0 + b1 (x − a) + b2 (x − a)2 + · · ·+ bn (x − a)n

where bi =
f (i) (a)

i !

However if the center x = a is not close to zero, we do not want
this Taylor polynomial converted to the power form. Since we want
to evaluate a this polynomial near the center, this is most
accurately and efficiently evaluated in the shifted power form.

Both the power form and the shifted power form can be efficiently
evaluated using nested multiplication (sometimes called Horner’s
method or synthetic division).

Other Representations (cont.)

Pn(x) = b0 + b1 (x − a) + b2 (x − a)2 + · · ·+ bn (x − a)n

where bi =
f (i) (a)

i !

However if the center x = a is not close to zero, we do not want
this Taylor polynomial converted to the power form. Since we want
to evaluate a this polynomial near the center, this is most
accurately and efficiently evaluated in the shifted power form.

Both the power form and the shifted power form can be efficiently
evaluated using nested multiplication (sometimes called Horner’s
method or synthetic division).

Nested Multiplication

P(t) = b0+(t − a) {b1 + (t − a) {b2 + (t − a) {· · ·+ (t − a) {bn} · · · }}}

Nested Multiplication

P(t) = b0+(t − a) {b1 + (t − a) {b2 + (t − a) {· · ·+ (t − a) {bn} · · · }}}

Nested Multiplication

P(t) = b0+(t − a) {b1 + (t − a) {b2 + (t − a) {· · ·+ (t − a) {bn} · · · }}}

Nested Multiplication (cont.)

P(t) = b0+(t − a) {b1 + (t − a) {b2 + (t − a) {· · ·+ (t − a) {bn} · · · }}}

Nested Multiplication (cont.)

P(t) = b0+(t − a) {b1 + (t − a) {b2 + (t − a) {· · ·+ (t − a) {bn} · · · }}}

Nested Multiplication (cont.)

P(t) = b0+(t − a) {b1 + (t − a) {b2 + (t − a) {· · ·+ (t − a) {bn} · · · }}}

Polynomial Interpolation

Given any function f (x), perhaps only known via a table, we seek a
polynomial of degree at most n that matches this function at n + 1
points {xi}, called the nodes.

Generally we let yi = f (xi), i = 0, 1, . . . , n, and we usually express
the interpolation conditions in a table.

x0 x1 · · · xn−1 xn

y0 y1 · · · yn−1 yn

Find P(x) of degree at most n satisfying the conditions

P(xi) = yi , i = 0, 1, 2, . . . , n

Polynomial Interpolation

Given any function f (x), perhaps only known via a table, we seek a
polynomial of degree at most n that matches this function at n + 1
points {xi}, called the nodes.
Generally we let yi = f (xi), i = 0, 1, . . . , n, and we usually express
the interpolation conditions in a table.

x0 x1 · · · xn−1 xn

y0 y1 · · · yn−1 yn

Find P(x) of degree at most n satisfying the conditions

P(xi) = yi , i = 0, 1, 2, . . . , n

Polynomial Interpolation

Given any function f (x), perhaps only known via a table, we seek a
polynomial of degree at most n that matches this function at n + 1
points {xi}, called the nodes.
Generally we let yi = f (xi), i = 0, 1, . . . , n, and we usually express
the interpolation conditions in a table.

x0 x1 · · · xn−1 xn

y0 y1 · · · yn−1 yn

Find P(x) of degree at most n satisfying the conditions

P(xi) = yi , i = 0, 1, 2, . . . , n

Polynomial Interpolation (cont.)

For most of our work, these nodes do not need to be in any order.
However, for simplicity we wish to assume that they are ordered,
and today the preferred order is in decreasing order.

x0 > x1 > x2 > · · · > xn−2 > xn−1 > xn

The word “interpolate” conveys a sense of “between-ness”. Thus we
should only be evaluating this interpolating polynomial P(x) for
x=values between x0 and xn.
However in many applications (especially in business and finance),
time is the independent variable x and the data consist of results
we have seen up to the current time. Our most important question
is what will happen in the future. Technically this is called
“extrapolation”. But we may very well evaluate the same
polynomial P(x) beyond the set of nodes. [Warning: Use caution
with extrapolation, and don’t go very far beyond the nodes!]

Polynomial Interpolation (cont.)

For most of our work, these nodes do not need to be in any order.
However, for simplicity we wish to assume that they are ordered,
and today the preferred order is in decreasing order.

x0 > x1 > x2 > · · · > xn−2 > xn−1 > xn

The word “interpolate” conveys a sense of “between-ness”. Thus we
should only be evaluating this interpolating polynomial P(x) for
x=values between x0 and xn.

However in many applications (especially in business and finance),
time is the independent variable x and the data consist of results
we have seen up to the current time. Our most important question
is what will happen in the future. Technically this is called
“extrapolation”. But we may very well evaluate the same
polynomial P(x) beyond the set of nodes. [Warning: Use caution
with extrapolation, and don’t go very far beyond the nodes!]

Polynomial Interpolation (cont.)

For most of our work, these nodes do not need to be in any order.
However, for simplicity we wish to assume that they are ordered,
and today the preferred order is in decreasing order.

x0 > x1 > x2 > · · · > xn−2 > xn−1 > xn

The word “interpolate” conveys a sense of “between-ness”. Thus we
should only be evaluating this interpolating polynomial P(x) for
x=values between x0 and xn.
However in many applications (especially in business and finance),
time is the independent variable x and the data consist of results
we have seen up to the current time. Our most important question
is what will happen in the future. Technically this is called
“extrapolation”. But we may very well evaluate the same
polynomial P(x) beyond the set of nodes. [Warning: Use caution
with extrapolation, and don’t go very far beyond the nodes!]

Polynomial Interpolation, Power Form
Using the power form, the (n + 1) interpolation conditions give rise
to (n + 1) equations in the (n + 1) coefficients for the polynomial
of degree at most n. In matrix notation, this leads to a full matrix,
called the Vandermonde matrix. Unfortunately these matrices are
very ill-conditioned, giving us matrix problems that are very difficult
to solve. The computational effort is O

(
n3), and even completed

in the best way possible, we will have serious concerns about the
accuracy of the solutions.

1 x0 x2
0 · · · xn

0
1 x1 x2

1 · · · xn
1

1 x2 x2
2 · · · xn

2
...

...
...

. . .
...

1 xn x2
n · · · xn

n

a0
a1
a2
...
an

 =

y0
y1
y2
...
yn

Since it is difficult to find the coefficients and it may be difficult to
evaluate the polynomial in this form, no practical computations are
done this way!

Polynomial Interpolation, Power Form
Using the power form, the (n + 1) interpolation conditions give rise
to (n + 1) equations in the (n + 1) coefficients for the polynomial
of degree at most n. In matrix notation, this leads to a full matrix,
called the Vandermonde matrix. Unfortunately these matrices are
very ill-conditioned, giving us matrix problems that are very difficult
to solve. The computational effort is O

(
n3), and even completed

in the best way possible, we will have serious concerns about the
accuracy of the solutions.

1 x0 x2
0 · · · xn

0
1 x1 x2

1 · · · xn
1

1 x2 x2
2 · · · xn

2
...

...
...

. . .
...

1 xn x2
n · · · xn

n

a0
a1
a2
...
an

 =

y0
y1
y2
...
yn

Since it is difficult to find the coefficients and it may be difficult to
evaluate the polynomial in this form, no practical computations are
done this way!

Polynomial Interpolation, Newton Form

Virtually all numerical analysis textbooks recommend the Newton
form.

P(x) = c0 + c1 (x − x0) + c2 (x − x0) (x − x1) + · · ·
+cn (x − x0) (x − x1) · · · (x − xn−1)

Thus

p1(x) = c0 + c1 (x − x0) will interpolate at nodes x0, x1

p2(x) = c0 + c1 (x − x0) + c2 (x − x0) (x − x1) at nodes x0, x1, x2

p3(x) = p2(x) + c3 (x − x0) (x − x1) (x − x2) nodes x0, x1, x2, x3

Polynomial Interpolation, Newton Form

Virtually all numerical analysis textbooks recommend the Newton
form.

P(x) = c0 + c1 (x − x0) + c2 (x − x0) (x − x1) + · · ·
+cn (x − x0) (x − x1) · · · (x − xn−1)

Thus

p1(x) = c0 + c1 (x − x0) will interpolate at nodes x0, x1

p2(x) = c0 + c1 (x − x0) + c2 (x − x0) (x − x1) at nodes x0, x1, x2

p3(x) = p2(x) + c3 (x − x0) (x − x1) (x − x2) nodes x0, x1, x2, x3

Polynomial Interpolation, Newton Form (cont.)

This leads to an lower triangular matrix in the equations for the
coefficients.

1 0 0 · · · 0
1 (x1 − x0) 0 · · · 0
1 (x2 − x0) (x2 − x0) (x2 − x1) · · · 0
...

...
...

. . . 0
1 (xn − x0) (xn − x0) (xn − x1) · · ·

∏n−1
j=0 (xn − xj)

c0
c1
c2
...
cn

We use a divided difference table to efficiently solve for the
coefficients. We can also generalize our nested multiplication
(changing the object factored out) to efficiently evaluate this
Newton form.

Polynomial Interpolation, Newton Form (cont.)

This leads to an lower triangular matrix in the equations for the
coefficients.

1 0 0 · · · 0
1 (x1 − x0) 0 · · · 0
1 (x2 − x0) (x2 − x0) (x2 − x1) · · · 0
...

...
...

. . . 0
1 (xn − x0) (xn − x0) (xn − x1) · · ·

∏n−1
j=0 (xn − xj)

c0
c1
c2
...
cn

We use a divided difference table to efficiently solve for the
coefficients. We can also generalize our nested multiplication
(changing the object factored out) to efficiently evaluate this
Newton form.

Polynomial Interpolation, Lagrange Form

Mostly for theoretical purposes, we create a custom basis for the
space of polynomials of degree at most n consisting of the following,

ϕi (x) =

∏n
j=0, j 6=i (x − xj)∏n
j=0, j 6=i (xi − xj)

, i = 0, 1, 2, . . . , n

with the feature that for each i we have

ϕi (xi) = 1, ϕi (xj) = 0, for all j 6= i .

Then with no matrix problem to solve at all, we get that

P(x) = y0ϕ0(x) + y1ϕ1(x) + y2ϕ2(x) + · · ·+ ynϕn(x).

But we always thought it was too much trouble to efficiently
evaluate this form!

Polynomial Interpolation, Lagrange Form

Mostly for theoretical purposes, we create a custom basis for the
space of polynomials of degree at most n consisting of the following,

ϕi (x) =

∏n
j=0, j 6=i (x − xj)∏n
j=0, j 6=i (xi − xj)

, i = 0, 1, 2, . . . , n

with the feature that for each i we have

ϕi (xi) = 1, ϕi (xj) = 0, for all j 6= i .

Then with no matrix problem to solve at all, we get that

P(x) = y0ϕ0(x) + y1ϕ1(x) + y2ϕ2(x) + · · ·+ ynϕn(x).

But we always thought it was too much trouble to efficiently
evaluate this form!

Polynomial Interpolation, Lagrange Form

Mostly for theoretical purposes, we create a custom basis for the
space of polynomials of degree at most n consisting of the following,

ϕi (x) =

∏n
j=0, j 6=i (x − xj)∏n
j=0, j 6=i (xi − xj)

, i = 0, 1, 2, . . . , n

with the feature that for each i we have

ϕi (xi) = 1, ϕi (xj) = 0, for all j 6= i .

Then with no matrix problem to solve at all, we get that

P(x) = y0ϕ0(x) + y1ϕ1(x) + y2ϕ2(x) + · · ·+ ynϕn(x).

But we always thought it was too much trouble to efficiently
evaluate this form!

Evaluation of the Lagrange Form
First we can note that we can pre-compute the denominator-part of
these Lagrange basis polynomials, and these will be called the
weights.

wi =
1∏n

j=0, j 6=i (xi − xj)
, i = 0, 1, 2, . . . , n

Further we create what we call the nodal polynomial with all of the
factors involving the nodes.

ϕ(x) =
n∏

j=0

(x − xj)

Then we get the first barycentric formula.

P(x) = y0ϕ0(x) + y1ϕ1(x) + y2ϕ2(x) + · · ·+ ynϕn(x)

= ϕ(x)
n∑

i=0

yiwi

(x − xi)

Evaluation of the Lagrange Form
First we can note that we can pre-compute the denominator-part of
these Lagrange basis polynomials, and these will be called the
weights.

wi =
1∏n

j=0, j 6=i (xi − xj)
, i = 0, 1, 2, . . . , n

Further we create what we call the nodal polynomial with all of the
factors involving the nodes.

ϕ(x) =
n∏

j=0

(x − xj)

Then we get the first barycentric formula.

P(x) = y0ϕ0(x) + y1ϕ1(x) + y2ϕ2(x) + · · ·+ ynϕn(x)

= ϕ(x)
n∑

i=0

yiwi

(x − xi)

Evaluation of the Lagrange Form (cont.)

P(x) = ϕ(x)
n∑

i=0

yiwi

(x − xi)

But these interpolating polynomials are unique, and so the
polynomial interpolating the function f (x) = 1 must in fact be the
constant polynomial P(x) = 1. Thus

1 = ϕ(x)
n∑

i=0

wi

(x − xi)
.

So now we divide our “general” first barycentric formula by 1 to get
the second barycentric formula. Notice we can eliminate the nodal
polynomial.

P(x) =

∑n
i=0

yiwi
(x−xi)∑n

i=0
wi

(x−xi)

Evaluation of the Lagrange Form (cont.)

P(x) = ϕ(x)
n∑

i=0

yiwi

(x − xi)

But these interpolating polynomials are unique, and so the
polynomial interpolating the function f (x) = 1 must in fact be the
constant polynomial P(x) = 1. Thus

1 = ϕ(x)
n∑

i=0

wi

(x − xi)
.

So now we divide our “general” first barycentric formula by 1 to get
the second barycentric formula. Notice we can eliminate the nodal
polynomial.

P(x) =

∑n
i=0

yiwi
(x−xi)∑n

i=0
wi

(x−xi)

Evaluation of the Lagrange Form (cont.)

P(x) =

∑n
i=0

yiwi
(x−xi)∑n

i=0
wi

(x−xi)

One final simplification we sometimes use is this. Since the weights
are used in both the numerator and the denominator, we can scale
the weights by any constant without altering the resulting quotient.

w̃i = Kwi , for any constant K 6= 0, i = 0, 1, 2, . . . , n

An Example Using NASA Data
I like to give my students the following problem which was actually
handed to me one summer over 30 years ago when I worked at the
Goddard Spaceflight Center:

I Given the data below, approximate the time T when the
geodetic latitude θ = −80◦.

θ (in deg) −79.789 −80.387 −80.818 −81.058 −81.091
T (in sec) 144 120 96 72 48

I Try first an interpolating polynomial of degree at most n = 4.
When you do not like the answer that you get (the NASA
worker handing me the task did not!) suggest something else.

An Example Using NASA Data
I like to give my students the following problem which was actually
handed to me one summer over 30 years ago when I worked at the
Goddard Spaceflight Center:

I Given the data below, approximate the time T when the
geodetic latitude θ = −80◦.

θ (in deg) −79.789 −80.387 −80.818 −81.058 −81.091
T (in sec) 144 120 96 72 48

I Try first an interpolating polynomial of degree at most n = 4.
When you do not like the answer that you get (the NASA
worker handing me the task did not!) suggest something else.

NASA Problem via Newton Form

θ (in deg) −79.789 −80.387 −80.818 −81.058 −81.091
T (in sec) 144 120 96 72 48

P(θ) = 144+ (θ + 79.789) {40.1338 + (θ + 80.387) {−15.1124
+(θ + 80.818) {40.1352+ (θ + 81.058) {2403.87}}} }

Then evaluating at θ = −80. gives the following.

P(−80.) = 303.965

NASA Problem via Barycentric Formula

θ (in deg) −79.789 −80.387 −80.818 −81.058 −81.091
T (in sec) 144 120 96 72 48

P(θ) =
144(.983583)
θ+79.789 −

120(8.21346)
θ+80.387 + 96(34.4139)

θ+80.818 −
72(148.283)
θ+81.058 + 48(121.009)

θ+81.091
(.983583)
θ+79.789 −

(8.21346)
θ+80.387 + (34.4139)

θ+80.818 −
(148.283)
θ+81.058 + (121.009)

θ+81.091

Then evaluating at θ = −80. gives the following.

P(−80.) = 303.965

NASA Problem Graph of P (θ)

θ (in deg) −79.789 −80.387 −80.818 −81.058 −81.091
T (in sec) 144 120 96 72 48

NASA Problem Alternatives

θ (in deg) −79.789 −80.387 −80.818 −81.058 −81.091
T (in sec) 144 120 96 72 48

P(θ) = 144+ (θ + 79.789) {40.1338 + (θ + 80.387) {−15.1124
+(θ + 80.818) {40.1352+ (θ + 81.058) {2403.87}}} }

P(θ) =

144(.983583)
θ+79.789 −

120(8.21346)
θ+80.387 + 96(34.4139)

θ+80.818 −
72(148.283)
θ+81.058 + 48(121.009)

θ+81.091
(.983583)
θ+79.789 −

(8.21346)
θ+80.387 + (34.4139)

θ+80.818 −
(148.283)
θ+81.058 + (121.009)

θ+81.091

−81.22 ≤ θ ≤ −79.66, −2.3E − 10 ≤ y ≤ 1.4E − 10

Comparison of Computations

Special Choices of Nodes

For many special choices of nodes, the weights in the barycentric
formula are known (and no computation is needed). For simplicity,
assume the interval is [−1, 1] .

I Equally spaced nodes: the normalized weights can be chosen as

xi = 1− 2j
n
, w̃i = (−1)j

(
n
i

)
, i = 0, 1, 2, . . . , n

I Chebyshev nodes of the first kind (zeros of a Chebyshev
polynomial):

xi = cos
(
(2i + 1)π
2n + 2

)
, w̃i = (−1)j sin

(
(2i + 1)π
2n + 2

)
,

i = 0, 1, 2, . . . , n

Special Choices of Nodes

For many special choices of nodes, the weights in the barycentric
formula are known (and no computation is needed). For simplicity,
assume the interval is [−1, 1] .

I Equally spaced nodes: the normalized weights can be chosen as

xi = 1− 2j
n
, w̃i = (−1)j

(
n
i

)
, i = 0, 1, 2, . . . , n

I Chebyshev nodes of the first kind (zeros of a Chebyshev
polynomial):

xi = cos
(
(2i + 1)π
2n + 2

)
, w̃i = (−1)j sin

(
(2i + 1)π
2n + 2

)
,

i = 0, 1, 2, . . . , n

Special Choices of Nodes (cont.)

I Chebyshev nodes of the second kind (extrema of a Chebyshev
polynomial):

xi = cos
(
jπ
n

)
, i = 0, 1, 2, . . . , n

w̃0 =

(
1
2

)
w̃i = (−1)j , i = 1, 2, . . . , (n − 1)

w̃n = (−1)n
(
1
2

)
1
K

= 2n−1
2n−1∏
j=1

sin
(
jπ
2n

)

Barycentric Formula for Chebyshev Nodes (2nd)

P(x) =
y0

2(x−x0)
+
∑n−1

i=1
yi (−1)i

(x−xi)
+ yn(−1)n

2(x−xn)

1
2(x−x0)

+
∑n−1

i=1
(−1)i

(x−xi)
+ (−1)n

2(x−xn)

where

xi = cos
(
jπ
n

)
, yi = f (xi)

i = 0, 1, 2, . . . , n

TI-89 Implementation

TI-89 Implementation (cont.)

Berrut-Trefethen Example

J.-P. Berrut & L. N. Trefethen, “Barycentric Lagrange
Interpolation,” SIAM Review, 2004 demonstrate with Matlab code
for the following function.

f (x) = |x |+ 1
2
x − x2, −1 ≤ x ≤ 1

Let us start with Chebyshev nodes (2nd) with n = 20.

Berrut-Trefethen Example

J.-P. Berrut & L. N. Trefethen, “Barycentric Lagrange
Interpolation,” SIAM Review, 2004 demonstrate with Matlab code
for the following function.

f (x) = |x |+ 1
2
x − x2, −1 ≤ x ≤ 1

Let us start with Chebyshev nodes (2nd) with n = 20.

Berrut-Trefethen Example (cont.)

f (x) = |x |+ 1
2
x − x2, −1 ≤ x ≤ 1

Chebyshev nodes (2nd), n = 20.

Berrut-Trefethen Example (cont.)

f (x) = |x |+ 1
2
x − x2, −1 ≤ x ≤ 1

Chebyshev nodes (2nd), n = 60.

Runge’s Example
If we translate Runge’s original example (on the interval [−5, 5]) to
our standard interval, it becomes the following.

f (x) =
1

1+ 25x2

Equally spaced nodes, n = 16.

−1 ≤ x ≤ 1, −3 ≤ y ≤ 2
|max error| ≈ 14.4

Runge’s Example
If we translate Runge’s original example (on the interval [−5, 5]) to
our standard interval, it becomes the following.

f (x) =
1

1+ 25x2

Equally spaced nodes, n = 16.

−1 ≤ x ≤ 1, −3 ≤ y ≤ 2
|max error| ≈ 14.4

Runge’s Example (cont.)
Runge’s original example.

f (x) =
1

1+ 25x2

Chebyshev nodes (2nd), n = 16.

−1 ≤ x ≤ 1, −0 ≤ y ≤ 1
|max error| ≈ 0.03672

Runge’s Example (cont.)
Runge’s original example.

f (x) =
1

1+ 25x2

Chebyshev nodes (2nd), n = 16.

−1 ≤ x ≤ 1, −0 ≤ y ≤ 1
|max error| ≈ 0.03672

Barycentric Formula Details
Technically we have replaced a polynomial P(x) of degree at most
n with a rational function which is not defined at the nodes {xi}.
We really should have the following.

P(x) =

∑n

i=0
yi wi

(x−xi)∑n
i=0

wi
(x−xi)

if x 6= xi for any i

yj if x = xj for some j

Barycentric Formula Details
Technically we have replaced a polynomial P(x) of degree at most
n with a rational function which is not defined at the nodes {xi}.
We really should have the following.

P(x) =

∑n

i=0
yi wi

(x−xi)∑n
i=0

wi
(x−xi)

if x 6= xi for any i

yj if x = xj for some j

Barycentric Formula Details

Technically we have replaced a polynomial P(x) of degree at most
n with a rational function which is not defined at the nodes {xi}.
We really should have the following.

P(x) =

∑n

i=0
yi wi

(x−xi)∑n
i=0

wi
(x−xi)

if x 6= xi for any i

yj if x = xj for some j

This potential “divide by zero” situation causes a problem in some
platforms. Berrut and Trefethen used Matlab code that did not
need to worry about this. When Matlab comes upon a “divide by
zero” situation, it simply assigns “NaN” to indicate “Not a
Number.” (GNU Octave does this as well). If this happens in one
or more components of a vector, Matlab and GNU Octave both will
continue to compute all of the rest of the components. Then when
you plot, points labeled “NaN” will simply be skipped.

Barycentric Formula Details

Technically we have replaced a polynomial P(x) of degree at most
n with a rational function which is not defined at the nodes {xi}.
We really should have the following.

P(x) =

∑n

i=0
yi wi

(x−xi)∑n
i=0

wi
(x−xi)

if x 6= xi for any i

yj if x = xj for some j

This potential “divide by zero” situation causes a problem in some
platforms. Berrut and Trefethen used Matlab code that did not
need to worry about this. When Matlab comes upon a “divide by
zero” situation, it simply assigns “NaN” to indicate “Not a
Number.” (GNU Octave does this as well). If this happens in one
or more components of a vector, Matlab and GNU Octave both will
continue to compute all of the rest of the components. Then when
you plot, points labeled “NaN” will simply be skipped.

Barycentric Formula Details (cont.)

P(x) =

∑n

i=0
yi wi

(x−xi)∑n
i=0

wi
(x−xi)

if x 6= xi for any i

yj if x = xj for some j

Scilab (and most programming languages) will abort the whole
process if a “divide by zero” occurs, and the other components of
the vector will not be computed. Thus you need to “check to see if
x equals one of the nodes or not” before you evaluate the
barycentric formula.

This is the main difficulty porting some of the algorithms in the
Chebfun package consisting of open source code for Mathlab
implementing these and many other ideas related polynomial
interpolation at Chebyshev nodes. (A URL for this appears in the
References.)

Barycentric Formula Details (cont.)

P(x) =

∑n

i=0
yi wi

(x−xi)∑n
i=0

wi
(x−xi)

if x 6= xi for any i

yj if x = xj for some j

Scilab (and most programming languages) will abort the whole
process if a “divide by zero” occurs, and the other components of
the vector will not be computed. Thus you need to “check to see if
x equals one of the nodes or not” before you evaluate the
barycentric formula.
This is the main difficulty porting some of the algorithms in the
Chebfun package consisting of open source code for Mathlab
implementing these and many other ideas related polynomial
interpolation at Chebyshev nodes. (A URL for this appears in the
References.)

References

I H. E. Salzer (1972), Lagrange Interpolation at Cheyshev
points xn,v = cos (vπ/n) , v = 0(1)n; some unnoted
advantages, Computer J. 15, 156-159.

I P. Henrici (1982), Essentials of Numerical Analysis: with
Pocket Calculator Demonstrations, Wiley, New York.

I J.-P. Berrut & L. N. Trefethen (2004), Barycentric Lagrange
Interpolation, Siam Rev. 46, 501-517.

I A. Greenbaum & T. P. Chartier (2012), Numerical Methods:
Design, Analysis, and Computer Implementation of
Algorithms, Princeton University Press.

I L. N. Trefethen (2013), Approximation Theory and
Approximation Practice, SIAM, Philadelphia.

I http://www.maths.ox.ac.uk/chebfun

http://www.maths.ox.ac.uk/chebfun

