Explorations with the Barycentric Formula for
Polynomial Interpolation

Dennis Pence

Kalamazoo, Michigan, U.S.A

July 4, 2014

Other Representations for Polynomials

Students in high school deal almost exclusively with polynomials in
the power form.

P(x) = apx" + ap_1x" 4 ax + ag

This is fine if you are evaluating the polynomial near zero (which
they usually are doing) and when the degree is low (usually n =2
or 3). This form is not appropriate for x = 50 or 200 or for much
higher degrees.

Other Representations for Polynomials

Students in high school deal almost exclusively with polynomials in
the power form.

P(x) = apx" + ap_1x" 4 ax + ag

This is fine if you are evaluating the polynomial near zero (which
they usually are doing) and when the degree is low (usually n =2
or 3). This form is not appropriate for x = 50 or 200 or for much
higher degrees.

In Calculus we introduce the Taylor polynomials, which have a
shifted power form.

Po(x) = bo+bi(x—a)+by(x—a)+---+b,(x—a)"
f(f)(a)

where b; = |
il

Some of my students insist on “multiplying this out” and reversing
the order, so that they really believe it is a polynomial.

Other Representations (cont.)

Po(x) = bo+bi(x—a)+by(x—a)+ -+ by(x—a)"
f(i)(a)

where b; = -
/!

However if the center x = a is not close to zero, we do not want
this Taylor polynomial converted to the power form. Since we want
to evaluate a this polynomial near the center, this is most
accurately and efficiently evaluated in the shifted power form.

Other Representations (cont.)

n

Pa(x) = bo+bi(x—a)+by(x—a)’+-- +by(x—a)
() (a)

where b; = -
/!

However if the center x = a is not close to zero, we do not want
this Taylor polynomial converted to the power form. Since we want
to evaluate a this polynomial near the center, this is most
accurately and efficiently evaluated in the shifted power form.

Both the power form and the shifted power form can be efficiently
evaluated using nested multiplication (sometimes called Horner's
method or synthetic division).

Nested Multiplication

P(t) = bo+(t —a) {b1 + (t —a){ba+ (t —a) {--- + (t —a) {bn}--- }}}

Nested Multiplication

P(t) = bo+(t — a) {by + (t —a) {bo+ (t —a) {-+ +

thestin,b,a,tl
tFunc

tLocal i,=s,cC
thin+l 138
th—aks

tFor 1 -1
t ksl
EndFor
tReturn C

! EndFunc

(t=a) {ba} -

1}

Nested Multiplication

P(t) = bo+(t — a) {by + (t —a) {bo+ (t —a) {-+ +

thestin,b,a,tl
tFunc

tLocal i,=s,cC
thin+l 138
th—aks

tFor 1 -1
: c*5+E[1 0
EndFor
tReturn C

! EndFunc

(t=a) {ba} -

1}

Nested Multiplication (cont.)

P(t) = bort(t — 3) (b1 + (¢ — 3) {ba + (£~ @) L+ + (¢~ 3) {bn)} -+ }}}

inestin.b,a.t?
fFunc
iLocal i.=.c
tbhln+l 1+c
tt—a¥s

tFor i.n,1, -1
t coksthll13c
:EndFor
iEeturn o
tEndFunc

Nested Multiplication (cont.)

P(t) = bort(t —) {by + (t — a) {ba + (£~ &) {4 (t —2) {bn} -3}

inestin,b,a,tl
tFunc
iLocal i,=.c
ibin+l1+c
tt—aws

iFor i.n,1, -1
tocksthl T4

: EndFor
iReturn c
EndFunc

t-a=s| b b b b b

Nested Multiplication (cont.)

P(t) = bort(t —) {by + (t —a) {ba + (£ — @) {-+ 4 (t —a) {bn} -3}

inestin,b,a,tl
tFunc
iLocal i,=.c
itbhln+l1+c
tt—aws

iFor i 1,-1
: 5*5+E[1] 0

:EndFor
:RELUPH C
EndFunc
t-a=s| b_ b, b, - b1 b,
Cn*S Cn_1*S /7101*8
4
C, Ch-1 Cn-2 Cy Cg

Polynomial Interpolation

Given any function f(x), perhaps only known via a table, we seek a
polynomial of degree at most n that matches this function at n+ 1
points {x;}, called the nodes.

Polynomial Interpolation

Given any function f(x), perhaps only known via a table, we seek a
polynomial of degree at most n that matches this function at n+ 1
points {x;}, called the nodes.

Generally we let y; = f(x;), i =0,1,...,n, and we usually express
the interpolation conditions in a table.

Polynomial Interpolation

Given any function f(x), perhaps only known via a table, we seek a
polynomial of degree at most n that matches this function at n+ 1
points {x;}, called the nodes.

Generally we let y; = f(x;), i =0,1,...,n, and we usually express
the interpolation conditions in a table.

o lvi [[yn1]ym]

Find P(x) of degree at most n satisfying the conditions

P(xi) =y, i=0,1,2,...,n

Polynomial Interpolation (cont.)

For most of our work, these nodes do not need to be in any order.
However, for simplicity we wish to assume that they are ordered,
and today the preferred order is in decreasing order.

Xo > X1 > X > > Xp—2 > Xp—1 > Xp

Polynomial Interpolation (cont.)

For most of our work, these nodes do not need to be in any order.
However, for simplicity we wish to assume that they are ordered,
and today the preferred order is in decreasing order.

Xo > X1 > X > > Xp—2 > Xp—1 > Xp
The word “interpolate” conveys a sense of “between-ness’. Thus we

should only be evaluating this interpolating polynomial P(x) for
x=values between xg and x,.

Polynomial Interpolation (cont.)

For most of our work, these nodes do not need to be in any order.
However, for simplicity we wish to assume that they are ordered,
and today the preferred order is in decreasing order.

X0 > X1 > Xp > > Xp—2 > Xp—1 > Xpn

The word “interpolate” conveys a sense of “between-ness’. Thus we
should only be evaluating this interpolating polynomial P(x) for
x=values between xg and x,.

However in many applications (especially in business and finance),
time is the independent variable x and the data consist of results
we have seen up to the current time. Our most important question
is what will happen in the future. Technically this is called
“extrapolation”. But we may very well evaluate the same
polynomial P(x) beyond the set of nodes. [Warning: Use caution
with extrapolation, and don’t go very far beyond the nodes!|

Polynomial Interpolation, Power Form

Using the power form, the (n + 1) interpolation conditions give rise
to (n+ 1) equations in the (n + 1) coefficients for the polynomial
of degree at most n. In matrix notation, this leads to a full matrix,
called the Vandermonde matrix. Unfortunately these matrices are
very ill-conditioned, giving us matrix problems that are very difficult
to solve. The computational effort is O (n®), and even completed
in the best way possible, we will have serious concerns about the
accuracy of the solutions.

(1 xo xg xg- BE Yo
1 2 .. n
1 x x22 R

1 x, x2 .- X)) an Yn

Polynomial Interpolation, Power Form

Using the power form, the (n + 1) interpolation conditions give rise
to (n+ 1) equations in the (n + 1) coefficients for the polynomial
of degree at most n. In matrix notation, this leads to a full matrix,
called the Vandermonde matrix. Unfortunately these matrices are
very ill-conditioned, giving us matrix problems that are very difficult
to solve. The computational effort is O (n®), and even completed
in the best way possible, we will have serious concerns about the
accuracy of the solutions.

(1 xo xg X EN) Yo

1 xq Xf e Xy a %1

1 x x22 R | =
|1 X X,% ceoxn | L an | | Yn |

Since it is difficult to find the coefficients and it may be difficult to
evaluate the polynomial in this form, no practical computations are
done this way!

Polynomial Interpolation, Newton Form

Virtually all numerical analysis textbooks recommend the Newton
form.

P(x) = aotalx—x)+alx—x)(x—x)+--

+cn (x —x0) (x — x1) -+ (X — xp—1)

Polynomial Interpolation, Newton Form

Virtually all numerical analysis textbooks recommend the Newton

form.
P(x) = cot+cal(x—x)+ca(x—x)Kx—x)+---
+en(x—x0) (x = x1) - (X — Xp—1)
Thus
pi(x) = co+c(x—xp) will interpolate at nodes xp, x
paix) = ct+ca(x—x)+ca(x—x)(x—x1) at nodes xp, x1, x2
p3(x) p2(x) + a3 (x — x0) (x — x1) (x — x2) nodes xp, x1, X2, X3

Polynomial Interpolation, Newton Form (cont.)

This leads to an lower triangular matrix in the equations for the
coefficients.

[1 0 0 0
1 (x1—x0) 0 0
1 (X2 —Xo) (X2 —Xo) (X2 —Xl) 0

1 (a—x0) On—x0)(a—x) - [[iZ (xa—x)

Polynomial Interpolation, Newton Form (cont.)

This leads to an lower triangular matrix in the equations for the
coefficients.

1 0 0 B 0 1T
1 (x1—x0) 0 0
1 (x2—x0) (x—x0)(x2—x1) 0
: ; : . 0
1 (xo—%0) (n—x0) 0 —x1) -+ 1720 (xa—x) | |

We use a divided difference table to efficiently solve for the
coefficients. We can also generalize our nested multiplication
(changing the object factored out) to efficiently evaluate this
Newton form.

Polynomial Interpolation, Lagrange Form

Mostly for theoretical purposes, we create a custom basis for the
space of polynomials of degree at most n consisting of the following,

() — H}’:O,j;éi (x —x)
901()_ Hn

j=0, j#i (xi — Xj)’

i=0,1,2,...,n

with the feature that for each i we have

vi(xi) =1, ¢i(x;)) =0, for allj #i.

Polynomial Interpolation, Lagrange Form

Mostly for theoretical purposes, we create a custom basis for the
space of polynomials of degree at most n consisting of the following,

H}':o,j;é; (x —x)
Hf:o,j;é; (xi — xj)

wi(x) = , 1=0,1,2,...,n

with the feature that for each i we have

vi(xi) =1, ¢i(x;)) =0, for allj #i.

Then with no matrix problem to solve at all, we get that

P(x) = yowo(x) + y101(x) + y2p02(x) + - - + Ynpn(x).

Polynomial Interpolation, Lagrange Form

Mostly for theoretical purposes, we create a custom basis for the
space of polynomials of degree at most n consisting of the following,

H}':o,j;é; (x —x)
Hf:o,j;é; (xi — xj)

pi(x) = . i=0,1,2,...,n

with the feature that for each i we have
wi(xi) =1, ¢i(x) =0, for allj#i.
Then with no matrix problem to solve at all, we get that
P(x) = yopo(x) + y1p1(x) + y2002(x) + - + ynon(x).

But we always thought it was too much trouble to efficiently
evaluate this form!

Evaluation of the Lagrange Form

First we can note that we can pre-compute the denominator-part of
these Lagrange basis polynomials, and these will be called the
weights.

1
H;:O,j;éi (xi — ;)

,i=0,1,2,...,n

w; =

Further we create what we call the nodal polynomial with all of the
factors involving the nodes.

Evaluation of the Lagrange Form

First we can note that we can pre-compute the denominator-part of
these Lagrange basis polynomials, and these will be called the
weights.

1
HJ’?:O,j;éi (xi — ;)

w; =

,i=0,1,2,...,n

Further we create what we call the nodal polynomial with all of the
factors involving the nodes.

n

o(x) =[] (x—x)

Jj=0
Then we get the first barycentric formula.

P(x) = yowo(x) + y1p1(x) + y202(x) + - + yapn(x)
= I

=

Evaluation of the Lagrange Form (cont.)

yl WI
= p(x Z (x—)
But these interpolating polynomials are unique, and so the

polynomial interpolating the function f(x) = 1 must in fact be the
constant polynomial P(x) = 1. Thus

n

N

i=0

Evaluation of the Lagrange Form (cont.)

yIWI
Z (x — x)

But these interpolating polynomials are unique, and so the
polynomial interpolating the function f(x) = 1 must in fact be the
constant polynomial P(x) = 1. Thus

n

N

i=0

So now we divide our “general” first barycentric formula by 1 to get
the second barycentric formula. Notice we can eliminate the nodal

polynomial.
Z .yl Wl
=0 (x X,

P(x) = 57 o

Evaluation of the Lagrange Form (cont.)

Z .yl Wl
=0 £=i=0 (x—x;)
Zn w;
i=0 (x—x;)
One final simplification we sometimes use is this. Since the weights

are used in both the numerator and the denominator, we can scale
the weights by any constant without altering the resulting quotient.

P(x) =

w; = Kw;, for any constant K #0, i =0,1,2,...,n

An Example Using NASA Data

| like to give my students the following problem which was actually
handed to me one summer over 30 years ago when | worked at the
Goddard Spaceflight Center:

» Given the data below, approximate the time T when the
geodetic latitude 6 = —80°.

| 6 (in deg) [—79.789 | —80.387 | —80.818 | —81.058 | —81.091 |
| T(insec)[144 [120 | 96 | 72 | 48 |

» Try first an interpolating polynomial of degree at most n = 4.
When you do not like the answer that you get (the NASA
worker handing me the task did not!) suggest something else.

An Example Using NASA Data

| like to give my students the following problem which was actually
handed to me one summer over 30 years ago when | worked at the
Goddard Spaceflight Center:

» Given the data below, approximate the time T when the
geodetic latitude 6 = —80°.

| 6 (in deg) [—79.789 | —80.387 | —80.818 | —81.058 | —81.091 |
| T(insec)[144 [120 | 96 | 72 | 48 |

» Try first an interpolating polynomial of degree at most n = 4.
When you do not like the answer that you get (the NASA
worker handing me the task did not!) suggest something else.

1T [FEr

& T o [FGv |F7 T
- $—|[Zoon|Trace |Rearaph[Math|Draw)« /

FIRIN RAD_AITO FURE

NASA Problem via Newton Form

| 6 (in deg) [—79.789 | —80.387 | —80.818 | —81.058 | —81.091 |
| T(nsec)| 144 | 120 [96 | 72 | 48 |

P(6) = 144+ (+79.789){40.1338 + (6 + 80.387) {—15.1124
+ (6 +80.818) {40.1352 4 (6 + 81.058) {2403.87}}} }

Then evaluating at § = —80. gives the following.

P(—80.) = 303.965

NASA Problem via Barycentric Formula

| 6 (in deg) | —79.789 | —80.387 | —80.818 | —81.058 | —81.001 |
| T(insec)| 144 | 120 | 9% [72 | 48 |

144(.983583) _ 120(8.21346) | 96(344139) 72(148.283) | 48(121.000)
P(0) = 0479.789 0+80.387 0+80.818 0+81.058 0+81.091

(983583) _ (8.21346) (344139) (148.283) | (121.009)
9+79.789 ~ 0+80.387 ' 0+80.818 6+81.058 ' 6+81.001

Then evaluating at § = —80. gives the following.

P(—80.) = 303.965

NASA Problem Graph of P ()

| 6 (in deg) [—79.789 | —80.387 | —80.818 | —81.058 | —81.091 |
| T(nsec)| 144 | 120 [96 | 72 | 48 |

Fzr Fz FEr Fa* S
|~r {—lEnamlTracelRegr‘aph Math|Draw|+ Fj?

et =0 . do i ZEE, 96D
HAIM EAD AUTO FLUMLE

NASA

Problem Alternatives

01

in deg) | —79.789 | —80.387 | —80.818 | —81.058 | —81.091 |

| T(nsec)| 144 | 120 | 9% [72 | 48 |

=

Fev | F3 & FEv | F&™ |F7 &
Zoon|Trace |Regraph|Math|Draw|- / P

pa(x) , cubic

i e— T — ; pz(x) , quadratic
Mﬁ::’;: — ERD AUTO - 1F3Lls'2. o p1 (X) 1 -I :I n ear
7
M’;ICP;:. 20 RAD RUTO — 1F3I.IEC. — -

P(0) = 144+ (0 + 79.789){40.1338 + (0 + 80.387) {—15.1124

+ (0 4 80.818) {40.1352 + (6 + 81.058) {2403.87}}} }

144(.983583) 120(8.21346) , 96(34.4139) 72(148.283) , 48(121.009

P(G) _ 0+79.789 ~ 6+80.387 + 0+80.818 =~ 6+81.058 + 0+81.091
(.983583) (8.21346) (34.4139) (148.283) (121.009)
0+79.789 = 60+80.387 + 0+80.818 = 0+81.058 + 0+81.001

HMAIN EAD AUTO FUMC

—81.22 <69 < —-79.66, -23E-10<y <14E-10

Comparison of Computations

fubaradn, =x)

TI '89 Png rams EEEQcal i, LdLiJ zz, temp. i

ar 1,14n
Loit]
: : zz[i
=coﬁF<n a2 EndFor
f Local i.a,t.d EFor 1, in
For i,1,n+] ' a1
[1ﬁ+a[1] ' xx[Ji —wwli+llezz]
3 : EndF
: : For
'FEPPJ!I M -1 : ww[Jif(zz[J])éww[J]
PRATIA kit 1w i J+11vrali+l] i EndFar
: EndFor i é;templ
*EndFor : 'gEmp*zz[Jlétemp

Divided Difference, Newton i%&ﬁywwhﬂl

tReturn ww
fEndFunc

feual(nia,) Weights Computed, Bary.

tLocal answ, i

: a[n+1]éansu

: For i,n.1,-1
ansukE=i[i 13 +alil+ansu

= EndFor

tharyevalin, s, g, w, bl

unc)
ocal num,dern,m,i.s
L

- e
tReturn answ
:EndFunc E;géT

w[1]/(£ = [11h+s
: ridmt [1 I+s3+num
dent+s+den
nodFar

Nested Multiplication, ndror
Newton Form FErdbine
Barycentric Formula

Special Choices of Nodes

For many special choices of nodes, the weights in the barycentric
formula are known (and no computation is needed). For simplicity,
assume the interval is [—1, 1].

» Equally spaced nodes: the normalized weights can be chosen as

2 : .
xi=1-Z wm=17("),i=0102...,n
n)

Special Choices of Nodes

For many special choices of nodes, the weights in the barycentric
formula are known (and no computation is needed). For simplicity,
assume the interval is [—1, 1].

» Equally spaced nodes: the normalized weights can be chosen as
2j - i .
xi=1-2 w=(-1y (7) i=0,1,2,....n
n

» Chebyshev nodes of the first kind (zeros of a Chebyshev
polynomial):

2i+1)m ~ i . 2i +1)m
Xj = COs <(2n_|_;> , Wi = (—1)'] sin (W) s

i=0,1,2,...,n

Special Choices of Nodes (cont.)

» Chebyshev nodes of the second kind (extrema of a Chebyshev

polynomial):
Xj = cos<ﬂ>,i:0,1,2,...,n
n
— 1
o = ()
w, = (-1Y,i=1,2,...,(n—1)

= 1 (3)

1 2n—1 jﬂ'
_ n—1 :
R = 2 H sin <2n>

j=1

Barycentric Formula for Chebyshev Nodes (2nd)

+Z” 1}’1(1) +Yn(1)n

2x X X—Xn
P = T
ey T it (o) T+ 2
where
X; cos (J:), yi = f(x)
i=0,1,2,....n

T1-89 Implementation

ichebnodedn ichebwt.Cnl

fFunc L. :Func o
iLocal K%,J) Local M%,J .
:newL15t R R frewlistontl 2w
iFor j.0,n,1 i .t 1 MJ

: Eprnx(an(J*nﬁnb}+xJ[J+1] iFor j.l.n,

: : '1+NJTJ+1]
-RELUPH] : EndFor

: EndFunc =w4[1]f2+wJ[1]

fwilntl 172%miln+l]
iReturn wj
tharuevalin, <, d,w, L2 :EndFunc
iFunc
iLocal num,den,m,i,=
3
i 3xden
tntlm
iFor
u[11xc£ —x[ilr+s
rdm+g [1 1ksnum
dent+s+den

T1-89 Implementation (cont.)

fchebnodein
tFunc o
tLocal K%,J)
trewlistCntl x4
fFor J.lhn,l o
: anPDKicnstJ*nfn})+xJ[J+1]
tEndFor

tReturn xj

! EndFunc

fchareval tn,x,d, 12

tFunc)

tLocal num,den,i,s

Loizwit—xll 10035

g [l Iks3*num

s+den

For i,2,n .
C-1atCi-10s k=i 103
g [1 1= num
den+s+den

E
L1224 b=+l 12 24s
ridftd [h+ L s 3num
dents3+den

Eum£den+5

E

Berrut-Trefethen Example

J.-P. Berrut & L. N. Trefethen, “Barycentric Lagrange
Interpolation,” SIAM Review, 2004 demonstrate with Matlab code
for the following function.

1
f(x):|xl+§x—x2, -1<x<1

Let us start with Chebyshev nodes (2nd) with n = 20.

Berrut-Trefethen Example

J.-P. Berrut & L. N. Trefethen, “Barycentric Lagrange
Interpolation,” SIAM Review, 2004 demonstrate with Matlab code
for the following function.

1
f(x):|x\+§x—x2, -1<x<1

Let us start with Chebyshev nodes (2nd) with n = 20.

[fi T FEv Trs-Tru-T FE T F&™ T]
vE AlasbraCalc|0ther |PramIl|Clean Up

= HewProk Dok q3=
= chebhode(200 + ==

£1. .9EFeEl: (951057 .8910a7 L 2090 ug=
W Define Fx)=lx +.5 5% x2 Do ur=

)+ Uy ga=
£.5 .SEEE04 . S22076 LS42617 . SS90 ale=

SFLOTE

MAIN EAD AUTO FUNC 420 MAIN EAD AUTO FUNC

Berrut-Trefethen Example (cont.)

1
f(x) = |X\—|— “x—x? —1<x<1

Chebyshev nodes (2nd), n = 20.

Fzr Fz FEr Fa* S
|~r {—lEnamlTracelRegr‘aph Math|Draw|+ Fj?

MAIN EAD AUTO FUMC

Berrut-Trefethen Example (cont.)

1
f(x) = |X\—|— “x—x? —1<x<1

Chebyshev nodes (2nd), n = 60.

Fzr Fz FEr Fa* S
|~r {—lEnamlTracelRegr‘aph Math|Draw|+ Fj?

MAIN EAD AUTO FUMC

Runge's Example

If we translate Runge's original example (on the interval [—5,5]) to
our standard interval, it becomes the following.

1
) = 1550

Runge's Example

If we translate Runge's original example (on the interval [—5,5]) to

our standard interval, it becomes the following.

1
) = 1550

Equally spaced nodes, n = 16.

1" _Fer FEr Far

- g |Z0om Tr*ai:e Regraph Matk 02|~

f\vﬂ,f\@@ﬂ_

MAIN EAD AUTO FUNC

-1 < x<1, 3<y<2

lmax error| ~ 14.4

Runge's Example (cont.)
Runge's original example.

Runge's Example (cont.)
Runge's original example.

Chebyshev nodes (2nd), n = 16.

1" _Fer FEr Far

- g |Z0om Tr*ai:e Regraph Matk 02|~

e
MAIN EAD AUTO FUNC

-1 < x<1, -0<y<1
|max error| &~ 0.03672

Barycentric Formula Details

Technically we have replaced a polynomial P(x) of degree at most
n with a rational function which is not defined at the nodes {x;}.
We really should have the following.

N YW
=0 (x=x;)

P(X) = -0 (XV_V;.

i

if x # x; for any J

~|

Yj if x = x; for some

Barycentric Formula Details
Technically we have replaced a polynomial P(x) of degree at most
n with a rational function which is not defined at the nodes {x;}.
We really should have the following.

n Yiwi
P(x) = ;m if x # x; for any i
Yj if x = x; for some
|’F1 T Fer T Fzv T Fu- T FE T FE+
- E Alaebra|Calc|0ther |PramI0|Clean Up

L) L — L L | N)

47 -.89100F -.95105F -.98FVeBs 1.
B =fine 0x)=|=|+ .5-}::—::{2 Oone
B gy

L.9 LOREERd4 (522076 .S42617 LS5O0k
B charewal (20, xx, g, ~1) undet
B charewal (20, xx, gy, O undet
B charewal (20, xx,yd, 13 undet

chareval {20, xx. yuv. 12
Al FEAD AUTO FUWC 720

Barycentric Formula Details

Technically we have replaced a polynomial P(x) of degree at most
n with a rational function which is not defined at the nodes {x;}.
We really should have the following.

n Yi%i
i=0 (xfx,-

P(X) = i=0 (XV,V;.

1

—|

if x # x; for any i

~|

Yj if x = x; for some

Barycentric Formula Details

Technically we have replaced a polynomial P(x) of degree at most
n with a rational function which is not defined at the nodes {x;}.
We really should have the following.

n Yiwi
i=0 (xfx-) . .
=—w— if x # x; for any i
P(X) = i=0 (xfx,-) '
Yj if x = x; for some

This potential "divide by zero" situation causes a problem in some
platforms. Berrut and Trefethen used Matlab code that did not
need to worry about this. When Matlab comes upon a “divide by
zero' situation, it simply assigns “NaN" to indicate “Not a
Number.” (GNU Octave does this as well). If this happens in one
or more components of a vector, Matlab and GNU Octave both will
continue to compute all of the rest of the components. Then when
you plot, points labeled “NaN" will simply be skipped.

Barycentric Formula Details (cont.)

> (:',M:!') n 75 f i

=—w— if x # x; for any i
P(x) =19 X0 o I Y

Yj if x = x; for some;

Scilab (and most programming languages) will abort the whole
process if a “divide by zero" occurs, and the other components of
the vector will not be computed. Thus you need to “check to see if
x equals one of the nodes or not” before you evaluate the
barycentric formula.

Barycentric Formula Details (cont.)

> (:',M:!') n 75 f .

=—w— if x # x; for any i
P(x) =19 X0 o I Y

i if x = x; for some;

Scilab (and most programming languages) will abort the whole
process if a “divide by zero" occurs, and the other components of
the vector will not be computed. Thus you need to “check to see if
x equals one of the nodes or not” before you evaluate the
barycentric formula.

This is the main difficulty porting some of the algorithms in the
Chebfun package consisting of open source code for Mathlab
implementing these and many other ideas related polynomial
interpolation at Chebyshev nodes. (A URL for this appears in the
References.)

c\h/e\b/f \u/n About News Download Do

Chebfun is an open-source package for computing with functions to 15-digi
Chebfun commands are overloads of familiar MATLAB commands — for ex:
computes anintegral, roots (f) finds zeros, and u = L\f solves a differ

DOWNLOAD V5 BROWSE SOURCE

5 Define t S

f chebfun (@ (x) sin(x.”2)+sin(x).”2, [0,1

01);

g chebfun (@ (x) exp((5-x).72/10), [0,10]);
ute their i

rr = roots(f - g);

% Plot the functions

plot([£f gl]), hold on

% Plot the i i

plot(rr,

References

» H. E. Salzer (1972), Lagrange Interpolation at Cheyshev
points x, , = cos (vw/n), v = 0(1)n; some unnoted
advantages, Computer J. 15, 156-159.

» P. Henrici (1982), Essentials of Numerical Analysis: with
Pocket Calculator Demonstrations, Wiley, New York.

» J.-P. Berrut & L. N. Trefethen (2004), Barycentric Lagrange
Interpolation, Siam Rev. 46, 501-517.

» A. Greenbaum & T. P. Chartier (2012), Numerical Methods:
Design, Analysis, and Computer Implementation of
Algorithms, Princeton University Press.

» L. N. Trefethen (2013), Approximation Theory and
Approximation Practice, SIAM, Philadelphia.

» http://www.maths.ox.ac.uk/chebfun

http://www.maths.ox.ac.uk/chebfun

Peter Henrici

p=—=———=—
ESSENTIALS OF
NUMERICAL ANALYSIS

With Pocket Calculator Demonstrations

NUMERICAL

ANMNE GREENBAUM & TIMOTHY P. CHARTIER

