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Introduction

In 1890 G.H. Bryan made the following calculation for a body
consisting of a ring or cylinder

η =
Rate of rotation of the vibrating pattern

Inertial rate of rotation of the vibrating structure
(1)

is a constant (known today as Bryan�s factor) for a �xed mode of
vibration.

Bryan�s e¤ect is used to callibrate the resonator gyroscopes (RGs)
used navigate, among other craft, the space shuttles and submarines.

If a disc gyroscope, with known Bryan�s factor η, is mounted in a
spacecraft and the vibration pattern of the gyroscope is observed,
then a slow rate of rotation rate of the craft εΩ may be measured via
Formula (1) as

εΩ =
Rate of rotation of the vibrating pattern of the gyroscope

η
.

(2)
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Introduction (continued)

A modern RG:

An aircraft RG array:
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Introduction (continued)

Bryan�s e¤ect may be partially observed in the following photographic
experiment of a wineglass �lled with milk and excited by a violin bow
on the left and, after being placed on a rotating turntable, by a wet
�nger on the right.

It is not evident from the photo, but the node does not rotate away
from the �nger continuously, but is "captured" in a �xed position.
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Introduction (continued)

This "capture e¤ect" is predictable when mass imperfections are
introduced into the equations of motion of the body. Indeed this was
demonstrated at the TIME 2012 conference by Joubert, Shatalov and
Coetzee (see the proceedings of TIME2012 as published in the
Journal of Symbolic Computation, 2014).

Indeed, the TIME2012 paper revealed that for the mth mode of
vibration, the precession angle m Θ behaves as demonstrated in the
following graph:
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Introduction (continued)

In this paper we demonstrate how an array of electrodes arranged
about a cylindrical disc gyroscope may be modelled by a Fourier series.

This model shows which electrodes may be manipulated in order to
eliminate the in�uence of the mass imperfections, rendering the
gyroscope "close to the ideal state".

In this "close to the ideal state" the formula

εΩ =
Rate of rotation of the vibrating pattern of the gyroscope

η
.

(3)
is valid, so that Bryan�s factor η may be used to navigate a spacecraft
by determining the slow rate of rotation εΩ.
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Equations of motion of an ideal disc

Consider the slow rotation rate εΩ of a vibrating cylindrical disc as
depicted in the following graph, where P is a particle vibrating in the
disc:
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Equations of motion of an ideal disc continued

As explained in the TIME 2012 paper, we assume that the radial
displacement u and tangential displacement v of a particle P in the
disc can be expressed as:

u (r , ϕ, t) = U(r)[C (t) cosmϕ+ S (t) sinmϕ], (4)

v (r , ϕ, t) = V (r)[C (t) sinmϕ� S (t) cosmϕ]. (5)

Here the integer m is the circumferential wave number, U and V are
eigenfunctions (both are combinations of Bessel functions)
corresponding to the angular frequency of vibration ω and C and S
are functions of time.



Equations of motion including mass imperfections

For a disc with mass imperfections that vary circumferentially, the
TIME 2012 paper revealed that a Fourier series for the density of the
form

ρ(ϕ) = ρ0(1+ 2ε
I0
I3
(ρc cos 2mϕ+ ρs sin 2mϕ)) (6)

su¢ ces to predict the behaviour of the precession angle.

Here ε is the dimensionless parameter that is a measure of smallness
mentioned above and ρ0 is the average density of the disc where the
dimensionless numbers ρc and ρs remind us that we are dealing
respectively with the coe¢ cient of the cosine and sine components of
the 2mth harmonics. The constants I0 and I3 are de�nite integrals:

I0 = ρ0h
Z q

p
[U(r)2 + V (r)2]rdr ,

I3 = ρ0h
Z q

p
[U2 � V 2]rdr ,

where U and V are the eigenfunctions mentioned above.
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Equations of motion including mass imperfections continued

In the TIME 2014 paper, considering the Lagrangian L (the di¤erence
between the kinetic energy Ek and the potential energy Ep of all of
the particles in the disc) that is:

L = Ek � Ep , (7)

we obtained:

L = π
2 I0(Ċ

2 + Ṡ2) + (8)

ε
�
πI1Ω(ĊS � CṠ) + π

2 I0ρc (Ċ
2 � Ṡ2) + πI0ρs Ċ Ṡ

�
� (9)

π
2 I2
�
C 2 + S2

�
. (10)

where
I1 = 2ρ0h

Z q

p
UVrdr , (11)

and I2 is a de�nite integral involving elastic constants and the
eigenfunctions U and V .
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Equations of motion including mass imperfections continued

The two applicable Euler-Lagrange Equations of motion are

d
dt

�
∂L
∂Ċ

�
�
�

∂L
∂C

�
= 0 (12)

and
d
dt

�
∂L
∂Ṡ

�
�
�

∂L
∂S

�
= 0. (13)

These equations yield the equations of motion:�
C̈
S̈

�
+ω2

�
1� ερc �ερs
�ερs 1+ ερc

��
C
S

�
= 2ηεΩ

�
�Ṡ
Ċ

�
, (14)

where Bryan�s factor η is given by:

�1 � η =
I1
I0
� 1 (15)

and the eigenvalue of vibration ω is given by:

ω =

r
I2
I0
. (16)
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Frequency splitting

The eigenvalues

ω2
�
1+ ε

q
ρ2c + ρ2s

�
;ω2

�
1� ε

q
ρ2c + ρ2s

�
(17)

of the matrix ω2
�
1� ερc �ερs
�ερs 1+ ερc

�
indicate that there "beats" or a

frequency splitting present.

The frequency of the beats is (neglecting O(ε2))

f =
εω
p

ρ2c + ρ2s
2π

. (18)

This frequency splitting causes the vibratory gyroscope to deviate
from ideal behaviour where Bryan�s factor can be used for navigation
purposes.
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Electrode array

Observe a cylindrical disc of thickness h surrounded by an array of
electronic plates each at a small distance d from the cylindrical
surface of the disc. These plates, together with the surface of the
cylindrical surface of the disc, approximate a "parallel plate capasitor"
array:

Assume that the polar axis runs from the centre of the disc through
the centre of the �rst electrode (using the numbering in the �gure)
and that the "angular length" of each parallel plate is 2∆ϕ.
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Total electrical potential energy

Assume that small potential di¤erences
p

εV1,
p

εV2,
p

εV3 andp
εV4 are maintained between the plate and the disc for capacitors

numbered one to four respectively, where we use the small parameter
ε again to emphasise smallness.

Assume that the other potential di¤erence around the disc are π
2

periodic in the sense that capacitor number �ve has potential
di¤erence

p
εV1, capacitor number six has potential di¤erence

p
εV2,

et cetera.

Now consider a small surface area dA = h q dϕ on the cylindrical
surface of the disc as depicted in the sketch:
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Total electrical potential energy continued

If there is part of a plate covering dA then this "in�nitesimal
parallel plate capacitor" has in�nitesimal capacitance

dC =
ε0

d � uq
dA =

ε0hq
d � uq

dϕ (19)

where ε0 � 8.854� 10�12 F .m�1 is the electromagnetic permittivity
of vacuum, d is the gap between the non-vibrating disc and the plate
and uq = u(q, ϕ, t) is the radial displacement of a vibrating particle
at the edge of the disc where r = q.

If this in�nitesimal parallel plate capacitor has a potential di¤erencep
εV (ϕ) 6= 0, then the in�nitesimal electrical potential energy dEe

stored by the in�nitesimal capacitor is

dEe =
εV 2(ϕ)
2

dC =
ε0hq

2 (d � uq)
εV 2(ϕ)dϕ (20)

If there is no part of a plate covering dA then capacitance is zero
and there is no potential di¤erence. If we declare

p
εV (ϕ) = 0 for

this ini�nitesimal area, then Equation (20) is still valid.
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Total electrical potential energy continued

Equation (20) may be manipulated as follows:

dEe =
ε0hq
2d

εV 2(ϕ)
1

(1� uq
d )
dϕ

=
ε0hq
2d

εV 2(ϕ)

"
1+

uq
d
+
u2q
d2

#
dϕ (21)

because uq << d .

As stated above, εV 2(ϕ) = 0 if there is no part of a plate covering
the area dA while εV 2(ϕ) = εV 21 if dA is covered by the 1

st , 5th , 9th

or 13th plate, et cetera. An example of the situation is depicted in the
following �gure:
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Total electrical potential energy continued

The total electrical potential is

Ee =
ε0hq
2d

Z 2π

0
εV 2(ϕ)

"
1+

uq
d
+
u2q
d2

#
dϕ. (22)

Because of the periodicity involved with the potentials, we may
determine a Fourier series for the function V 2(ϕ) depicted in the
�gure as follows

V 2(ϕ) =
a0
2
+

∞

∑
n=1

(an cos nϕ+ bn sin nϕ) (23)
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Fourier series for V 2(ϕ)

V 2(ϕ) =
a0
2
+

∞

∑
n=1

(an cos nϕ+ bn sin nϕ) (24)

where

an =
1
π

�Z ∆ϕ

0
V 21 cos nϕdϕ+

Z π
8 +∆ϕ

π
8 �∆ϕ

V 22 cos nϕdϕ+

Z π
4 +∆ϕ

π
4 �∆ϕ

V 23 cos nϕdϕ+
Z 3π

8 +∆ϕ

3π
8 �∆ϕ

V 24 cos nϕdϕ+ (25)

Z π
2 +∆ϕ

π
2 �∆ϕ

V 21 cos nϕdϕ+
Z 5π

8 +∆ϕ

5π
8 �∆ϕ

V 22 cos nϕdϕ+ (26)

� � �+
Z 2π

2π�∆ϕ
V 21 cos nϕdϕ

�
, n = 0, 1, 2 � � � . (27)
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4 +∆ϕ

π
4 �∆ϕ

V 23 cos nϕdϕ+
Z 3π

8 +∆ϕ

3π
8 �∆ϕ

V 24 cos nϕdϕ+ (25)

Z π
2 +∆ϕ

π
2 �∆ϕ

V 21 cos nϕdϕ+
Z 5π

8 +∆ϕ

5π
8 �∆ϕ

V 22 cos nϕdϕ+ (26)

� � �+
Z 2π

2π�∆ϕ
V 21 cos nϕdϕ

�
, n = 0, 1, 2 � � � . (27)



Fourier series for V 2(ϕ)

The CAS Mathematica R was used calculate the Fourier coe¢ cient
an. The code is indicated in the following �gure
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Fourier series for V 2(ϕ)

A Figure of the code used to calculate the Fourier coe¢ cient bn
follows:



Fourier series for V 2(ϕ)

A Figure of the code used to calculate the Fourier coe¢ cient bn
follows:



Using orthogonality

Vibratory gyroscopes usually work with the mode of vibration
determined by the m = 2 circumferential wave number. The vibration
pattern is illustrated in the following �gure:
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Using orthogonality continued

Recall that for the circumferential wave number m = 2

u (q, ϕ, t) = U(q)[C (t) cos 2ϕ+ S (t) sin 2ϕ]. (28)

The "TrigReduce" command in Mathematica R yields u2q reveals
that:

u2q = U
2(q)[

C 2 + S2

2
+
C 2 � S2
2

cos 4ϕ+ CS sin 4ϕ]. (29)

Consequently, because of the orthogonality of the sine and cosine
functions, when we substitute the Fourier series for V (ϕ) into

Ee =
ε0hq
2d

Z 2π

0
εV 2(ϕ)

"
1+

uq
d
+
u2q
d2

#
dϕ, (30)

only the zeroth harmonic and the 4th harmonic are salient and we can
neglect uqd .
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Total electrical potential energy in terms of Fourier coe¢ cients

Hence, using the tables of Fourier coe¢ cients generated by
Mathematica R,

Ee =
ε0hq
2d

Z 2π

0
ε

(
4∆ϕ

�
V 21 + V

2
2 + V

2
3 + V

2
4

�
π

+

2
�
V 21 � V 23

�
sin(4∆ϕ)

π
cos 4ϕ+

2
�
V 22 � V 24

�
sin(4∆ϕ)

π
sin 4ϕ

)
�

(
1+

u2q
d2

)
dϕ (31)



Total electrical potential energy in terms of Fourier coe¢ cients continued

Using Mathematica R to do the book-keeping, we �nd

Ee = πε

�
k0 +

1
2
k1
�
C 2 + S2

�
+
1
2
k2(C 2 � S2) + k3CS

�
(32)

where

k0 =
4∆ϕhqε0

πd

�
V 21 + V

2
2 + V

2
3 + V

2
4

�
(33)

k1 =
4∆ϕhqε0U2(q)

πd3
�
V 21 + V

2
2 + V

2
3 + V

2
4

�
(34)

k2 =
hqε0 sin(4∆ϕ)U2(q)

πd3
�
V 21 � V 23

�
(35)

k3 =
hqε0 sin(4∆ϕ)U2(q)

πd3
�
V 22 � V 24

�
(36)
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Equations of motion including the capacitors

We include the electrical potential energy into the Lagrangian L as
follows

L = Ek � Ep + Ee

Hence

L = π
2 I0(Ċ

2 + Ṡ2)+

επ
�
I1Ω(ĊS � CṠ) + π

2 I0ρc (Ċ
2 � Ṡ2) + πI0ρs Ċ Ṡ

�
�

π
2 I2
�
C 2 + S2

�
+ επ

�
k0 + 1

2k1
�
C 2 + S2

�
+ 1

2k2(C
2 � S2) + k3CS

�
.

(37)

The two applicable Euler-Lagrange Equations of motion are

d
dt

�
∂L
∂Ċ

�
�
�

∂L
∂C

�
= 0 &

d
dt

�
∂L
∂Ṡ

�
�
�

∂L
∂S

�
= 0 (38)
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Equations of motion including the capacitors continued

A �gure showing some of the Mathematica R code used to
calculate the equations of motion follows
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Equations of motion including the capacitors continued

Neglecting terms of O(ε2), the equations of motion produced by
Mathematica R can be written in matrix form as follows:

�
1+ ερc ερs

ερs 1� ερc

��
C̈
S̈

�
+

1
I0

�
I2 � εk1 � εk2 �εk3

�εk3 I2 � εk1 + εI2

��
C
S

�
�

2ηεΩ
�
0 �1
1 0

��
Ċ
Ṡ

�
= 0 (39)

The inverse matrix of the leading coe¢ cent matrix is:

�
1� ερc �ερs
�ερs 1+ ερc

�



Equations of motion including the capacitors continued

Neglecting terms of O(ε2), the equations of motion produced by
Mathematica R can be written in matrix form as follows:

�
1+ ερc ερs

ερs 1� ερc

��
C̈
S̈

�
+

1
I0

�
I2 � εk1 � εk2 �εk3

�εk3 I2 � εk1 + εI2

��
C
S

�
�

2ηεΩ
�
0 �1
1 0

��
Ċ
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Equations of motion including the capacitors continued

Multiplying the matrix equation�
1+ ερc ερs

ερs 1� ερc

��
C̈
S̈

�
+

1
I0

�
I2 � εk1 � εk2 �εk3

�εk3 I2 � εk1 + εI2

��
C
S

�
= 2ηεΩ

�
0 �1
1 0

��
Ċ
Ṡ

�
(40)

through by this inverse matrix yields (neglecting O(ε2)) yields:

�
C̈
S̈

�
+
1
I0

�
I2 � ε (k1 + k2 + ρc I2) �ε (k3 + ρs I2)

�ε (k3 + ρs I2) I2 + ε (�k1 + k2 + ρc I2)

��
C
S

�
= 2ηεΩ

�
0 �1
1 0

��
Ċ
Ṡ

�
(41)



Equations of motion including the capacitors continued

Multiplying the matrix equation�
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Controlling mass imperfections

Examining the equations of motion that include mass imperfections:�
C̈
S̈

�
+
1
I0

�
I2 � εk1 � ε [k2 + ρc I2] �ε [k3 + ρs I2]

�ε [k3 + ρs I2] I2 � εk1 + ε [k2 + ρc I2]

��
C
S

�
= 2ηεΩ

�
0 �1
1 0

��
Ċ
Ṡ

�
, (42)

if we arrange capacitor voltage so that

ε [k2 + ρc I2] = 0 & ε [k2 + ρc I2] = 0

then the equations of motion reduce to�
C̈
S̈

�
+
I2 � εk1
I0

�
C
S

�
= 2ηεΩ

�
0 �1
1 0

��
Ċ
Ṡ

�
. (43)
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Ċ
Ṡ
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Negative sti¤ness

It is possible to achieve

ε [k2 + ρc I2] = 0 & ε [k2 + ρc I2] = 0,

that is, it is possible to achieve

k2 = �ρc I2 & k3 = �ρs I2

because we may manipulate capacitors changing the size and sign of
k1 and k2 since

k2 ∝
�
V 21 � V 23

�
& k3 ∝

�
V 22 � V 24

�
.

Consider that the equations of motion of an ideal cylindrical ring
gyroscope are�

C̈
S̈

�
+
I2
I0

�
C
S

�
= 2ηεΩ

�
0 �1
1 0

��
Ċ
Ṡ

�
(44)

while those of a cylindrical ring gyroscope with mass imperfections
and a capacitor array set appropriately are:�

C̈
S̈

�
+
I2 � εk1
I0

�
C
S

�
= 2ηεΩ

�
0 �1
1 0

��
Ċ
Ṡ

�
. (45)
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Ṡ

�
. (45)



Negative sti¤ness

It is possible to achieve

ε [k2 + ρc I2] = 0 & ε [k2 + ρc I2] = 0,

that is, it is possible to achieve

k2 = �ρc I2 & k3 = �ρs I2

because we may manipulate capacitors changing the size and sign of
k1 and k2 since

k2 ∝
�
V 21 � V 23

�
& k3 ∝

�
V 22 � V 24

�
.

Consider that the equations of motion of an ideal cylindrical ring
gyroscope are�

C̈
S̈

�
+
I2
I0

�
C
S

�
= 2ηεΩ

�
0 �1
1 0

��
Ċ
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Negative sti¤ness continued

Consequently the equations of motion of an ideal cylindrical ring
gyroscope may be written as:�

C̈
S̈

�
+ω2

�
C
S

�
= 2ηεΩ

�
0 �1
1 0

��
Ċ
Ṡ

�
(46)

while those of a cylindrical ring gyroscope with mass imperfections
may be written as:�

C̈
S̈

�
+ (ω�)2

�
C
S

�
= 2ηεΩ

�
0 �1
1 0

��
Ċ
Ṡ

�
. (47)

Hence, the capacitors have produced a gyroscope with mass
imperfections that behaves "ideally" and is vibrating with a reduced
angular rate

ω� =

r
I2 � εk1
I0

k1 ∝
�
V 21 + V

2
2 + V

2
3 + V

2
4

�
as opposed to the ideal angular rate of vibration

ω =

r
I2
I0
.
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Ṡ

�
. (47)

Hence, the capacitors have produced a gyroscope with mass
imperfections that behaves "ideally" and is vibrating with a reduced
angular rate

ω� =

r
I2 � εk1
I0

k1 ∝
�
V 21 + V

2
2 + V

2
3 + V

2
4

�
as opposed to the ideal angular rate of vibration

ω =

r
I2
I0
.



Negative sti¤ness continued

The term

k1 =
4∆ϕhqε0U2(q)

πd3
�
V 21 + V

2
2 + V

2
3 + V

2
4

�
is clearly positive. Consequently, the positive term εk1 in

ω� =

r
I2 � εk1
I0

reduces the sti¤ness integral I2 and is known as negative stifness.

A cylindrical ring gyroscope manufactured by including this array of
capacitors and manipulating them appropriately will be able to utilise
Bryan�s factor η to determine the rotation rate εΩ of the vehicle in
which it is mounted using the fomula

εΩ =
Rate of rotation of the vibrating pattern of the gyroscope

η
.

(48)
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