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Introduction

� There are up to seven 2D plot windows 
in Npsire CAS.

� We will start by plotting a simple curve 
using many Graph Entry/Edit styles.

� Plotting these graphs will become an 
opportunity to use some nice features of 
Nspire CAS.

� Namely the power of the math engine, 
the built-in geometry package and the 
possibility of using animations.
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Introduction

� The most important consequence 
will be the following: we will be 
using these 2D graph windows to 
do more and not less mathematics!  

� It will become and opportunity to 
make connections between subjects 
that may look different but are, in 
fact, related.  Computer Algebra
allows this.
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Introduction

� (Since OS 3.2) The 2D plot window 
graph Entry/Edit accepts up to 7 
different types but 2D implicit plots 
are still missing.

� Slider bars, animations, dynamic 
geometry, styles and colors make each 
of these 2D plot windows very 
attractive and useful for teaching 
mathematics and sciences. 
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Using a 2D Plot Window in a CAS 

Perspective

� Types of Nspire CAS 2D graphs: 
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Using a 2D Plot Window in a CAS 

Perspective

� Today sequence and differential 

equations graphing modes won’t be 

used in this talk.  So we will make use 

of function, equation, parametric, 

polar and scatter plot graphing modes.

� Despite the fact that implicit 2D 

plotting is not yet available, one can 

plot curves defined by x = g(y) and, in 

some cases, plot implicit curves. 
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Using a 2D Plot Window in a CAS 

Perspective

� This talk adopts the following way 
of procedure.

� An example is shown on slides 
with few details: then we switch to 
Nspire CAS and perform it live, 
giving all necessary details.

� In order to do this, the CAS should 
be easy to use with a simple 
syntax. 
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Using a 2D Plot Window in a CAS 

Perspective

� For those among the audience who 

are not using Nspire CAS, this talk 

can serve as an introduction.

� For those among the audience who 

are using Nspire CAS, this talk can 

give additional ideas for teaching 

mathematics at undergraduate 

level.
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Plotting a circle and implicit differentiation

� The following example may look 

irrelevant … but many engineering 

students have forgotten some basic 

curves!  

� Example: how can I use Nspire CAS 

to plot the following circle?    
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Plotting a circle and implicit differentiation

� We can use the “equation” 

Graph/Entry Edit mode.

• the graph is very nice and the editor helps 

students to recall the equation of a circle.

� Using function graphing (with 

“zeros”) is possible in this case.

• This represents an opportunity for the teacher to 

recall that many equations can’t be solved … so 

this is why we are asking TI to eventually

implement a real 2D implicit plotter in Nspire!
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Plotting a circle and implicit differentiation

� Parametric equations (2D parametric 

window) can be used.

• The first trigonometry identity is used and 

students are introduced to vector functions of a 

real variable. 

� Using polar coordinates is also 

possible.

• Here we move on the calculus side and implicit 

differentiation can be used to find the angular 

sector that contains the circle.
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Plotting a circle and implicit differentiation

� Here is what we can get:
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« Equation » « Function »

« Parametric » « Polar »



Plotting a circle and implicit differentiation

�Let’s perform this 

example on Nspire

CAS.
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Helping students with inverse functions

� Many students starting their 

engineering program at ETS don’t 

have any idea (or have forgotten) what 

arcsin(x) means.  In fact, functions as 

exp(x), ln(x), arctan(x) look strange 

for them…

� An original approach to recall these 

functions can be done in Nspire CAS.
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Helping students with inverse functions

� This approach consists of using a 2D 
graph window in function mode:
• We plot a given function f1(x) = f(x) where f is an 

expression in the variable x.  Then the label style is 
changed for y = f(x).

• In the same window, we insert the text x = f(y), drag 
this onto an axis and the graph appears!

• This is the inverse relation.

� In some cases, students understand why 
the domain of f needs to be restricted in 
order to have the existence of an inverse 
function.
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Helping students with inverse functions

� Questions as the following now make 

sense.  Why does sin(arcsin(x)) 

simplify to x but not arcsin(sin(x))?

� What happens with tan and arctan?
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Helping students with inverse functions

� What happens with exp and ln?

� Use of the built-in “domain” function 

(or restricting the domain) will yield 

the expected simplifications.
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Helping students with inverse functions

�Let’s take a look at 

inverse functions 

with Nspire CAS.
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A more complicated example

� Now let’s move to a more general 

example.  The function               is not 

one to one.  This function has a global 

minimum located at (−1, −1/e):  
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A more complicated example

� is not one to one but we can 

plot the inverse relation: 
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Since OS 3.2, 

graphs of

x = g(y) 

are possible.



A more complicated example

� This is a first step to the famous 
Lambert W function:

� More details can be found at 
http://www.apmaths.uwo.ca/~djeffrey/
Offprints/W-adv-cm.pdf
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A more complicated example

� This is, in fact, a “multi-valued” function 
(having 2 real branches).  And because 
the complex exponential function is 
periodic, there exists an infinite number 
of complex solutions (but only a finite 
number of real solutions).

� Using some algebra, it is not difficult to 
show that an equation involving a power 
and an exponential can be solved by this 
function. 
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A more complicated example

� This special function is implemented 

in Maple and Mathematica.  This is 

why these systems can find every real 

solution and some complex ones to an 

equation as                 .

� The fast processor of Nspire CAS 

rapidly yields the 3 real solutions … 

but no complex ones. 
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A more complicated example

In order to get complex solutions with 
Nspire CAS, we can replace x by the 
complex number x + iy and solve 2 
equations in 2 unknowns (taking real and 
imaginary parts).  A fast and robust implicit 
plotter would be so useful…because we 
would see these complex solutions on the 
screen.   
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A more complicated example

With Derive, we can plot the curves 

Twelve solutions (10 complex) appear in 

the window −2 < x, y < 2:
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A more complicated example

� With Nspire CAS, these 12 solutions 

can be observed if one uses a 3D plot:
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The surface z1(x, y) meets

the plane z = 0 twelve times.



Intersection of 2 parametric curves

� Suppose that 2 objects are moving in 

the plane.  Their respective positions 

are given by parametric equations:

� Find the point(s) of intersection of 

their trajectory.
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Intersection of 2 parametric curves

� We can plot both curves in the same 

window … but the “intersection” tool 

is not available in parametric mode!

� We will show that a good use of the 

“solve” command (with initial guess 

provided by the “graph trace” tool) 

will be useful to find the coordinates 

of the point(s) of intersection.
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Intersection of 2 parametric curves
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Two intersections

Here.

Two more there.

One here.



Intersection of 2 parametric curves

� We need to pay attention when we try 

to find the point(s) of intersection of 2 

parametric curves.

� The trajectories can cross at a given 

point, but not necessarily at the same 

time.

� Moreover, in our example, the system 

that needs to be solved is not linear, 

neither polynomial.  31



Intersection of 2 parametric curves

�Let’s see how to 

find these 5 points 

of intersection in 

Nspire CAS.
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From piecewise to indicator functions

� In Nspire CAS, it is very easy to 

define a piecewise function: templates 

can be used like the ones textbooks 

contain!
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From piecewise to indicator functions

� Here is an application: we want to 

revolve around the x-axis, the 

following piecewise function:

34



From piecewise  to indicator functions

� Doing so, a solid of revolution will be 

generated.  

� In  calculus I (single variable), only 

2D graphs are considered but, as an 

application of the definite integral, we 

often want to show students the 3D 

representation of the solid.
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From piecewise to indicator functions

� To plot this solid, we can use (3D) 

parametric equations (in fact, these are 

the cylindrical coordinates: slicing the 

solid with disks).
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From piecewise to indicator functions

� We should obtain this:

Let’s try … (there will be a surprise!).
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Geometric transformation and matrix stuff

�Example:  A four side polygon has 
vertices located at the points (−9, −1), 
(−7, −2), (−5,−1) and (−7, −4).

�We rotate it counterclockwise around 
the point (−3, 3) by an angle of 135°. 

�Where are the vertices of the new 
polygon?
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Geometric transformation and matrix stuff

�The built-in geometry package of 

Nspire CAS can be used to solve this 

problem without “using” mathematics:

39



Geometric transformation and matrix stuff

�In fact, TI-Nspire CAS can  be used to 
find the answer in exact mode.  Namely 
by using matrix stuff.

�Rotation (in 2D) is usually defined about 
the origin.  So we first need to translate
our polygon from the vector [3, −3]; 
then perform the rotation. Finally, 
translate by the vector [−3, 3].

�So 3 matrices must be defined.  But a 
“translation” is not a linear 
transformation!
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Geometric transformation and matrix stuff

�Homogeneous coordinates   

are what we will be using.

�Let’s conclude this talk by 

performing this example.
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