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Motivation

la théorie des enveloppes. ]J.
liquées, XLI,fasc. 2, 1962, pp.
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R. Thom

La récente réforme des études de licence en
mathématiques a completement évincé des
programmes la théorie des enveloppes. ... je ne
puis que trouver cette disparition tres regrettable;
rappelons ... le role des enveloppes dans la
theéorie des équations différentielles (intégrales
singulieres), et des équations aux dérivées
partielles; mais est-il concevable qu'un professeur
de lycée ait quelque usage des problemes de la
Géomeétrie Elementaire, sans connaitre .... les
phénomenes généraux de cette théorie?
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R. Thom

int de vue pratique, la théorie des
ompte de phenomenes familiers,
elle inexpliqués; pour s’en convaincre, il
d’observer, a l'intérieur d’un bol

phérique de café au lait convenablement

e, la structure cuspidale des caustiques de
ion, et leur variation quand l'éclairage se
modifie.
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e reason of the disappearance,
according to Thom

theory is not rigorous enough

ases have been included in a catalogue

ually: the theory is so rich that it is
impossible to force it into the rules of a
rigorous pedagogy.
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' in-service teachers
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Curvature

Consider a curve given by a parameterization by arc length s,
1.e. r=x(s)=[x(5),y(s)]- The parameterization defines a direction
on the curve, as s increases.

Define
t(s) = the unit tangent vector associated with the direction

n(s) = the unit normal vector s.t. (t,n) is a counterclockwise
oriented frame.

¢(s) = the angle of the tangent with the positive x-axis

The curvature at a point measures the rate of curving as the
point moves along the curve with unit speed
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The curvature of a straight e :
line is 0 everywhere (DR |

On a curve, points where
k=0 are points of
inflexion.

At every point on a circle,
the curvature of the circle
oriented by its inner
normal is the reciprocal of
the radius of the circle .

The radius of curvature of
a curve at a point
[x(s),y(s)] is equal to
1/k(s).
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‘e of a plane curve

GRAPH OF A FUNCTION

The curve is given by

=fx).

he corresponding vector
formula is r(x)=x 1 + f(x) j.
Then:
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Reconstruction of a curve from
Its curvature

construct the curve from its curvature,
ansformations (determined by 3
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ExXamples of reconstruction

CONSTANTS=0 NON ZERO CONSTANTS

Ele 8¢ et Author Senply Solve Cakuha Options Window Help
IRBX Bkl =s Q% md JEZM +X @

[ k(s) = s ds
[ k(s) ds

ds, | SIN|—
2
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Circle of curvature

The circle of curvature at
non-inflexion point P (i.e.
k#0) on a plane curve is the
circle such that:

. Itis tangent to the curve at
P

. It has the same curvature
as the curve at P

. It lies toward the concave
(or inner) side of the curve

. The center of the circle of
curvature at P is called the
center of curvature at P.
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Derive 6

File Edit Insert Set Options Window Help

DBEE BX |V |l £ R et e

[ Algebra1 Ellipse-Evolute.dfw [o | @[ || H20-plotia =)
PR 05 (t), SINCE)) parameterization of the given ellipse ' ) ) v '
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dt
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#5: COS(t)+(15+SINCE) + y) — 4-x-SIN(t)
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=
[x, ¥y
3
15.€0S(t) 3
#9: [x = T Ay =-15.5IN(R) 10
4
3
llS-COS(t) 3] parameterization of the evolute : : : -15
#10: | ——— " - 15.SIN(Y)
4
-20
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From normals to Evolute

Thm: The evolute is tangent to the normals to the
given curve at the centers of curvature

. center of
center of ~N curvature
% f ik

[ curvature
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Cusps on the evolute

Thm: The evolute of a curve
C: r=r(t) has a cusp at the
point r(t,) if, and only if,
1(ty) is a vertex of C. The
cusp on the evolute is
pointing towards or away
from the vertex according to
the absolute value of the
curvature at r(t,) having an
absolute minimum or
maximum at r(t,).
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[F5] Algebra1 ParabolaEvolutes.dfw

o o))

#1: [cos(t). cos(t)Z]

| ’]
#2-  — |cos(t), cos(t)
dt
#3: [- SINCt), - 2+SIN(t).C0S(t)]

equation of normals to the curve

2
#4: ([x, y] - [CDS(t). s(t) ]) o [- SINCt), - 2.SIN(t).COS(t)]

3
#5: 2.SIN(t).COS(t) + (1 - 2.y)+SIN(t).COS(t) - x«SIN(t)
reduced equation of the normals
2 X 1
#6: y = COS(t) - — &+ —
2.005(t) 2
2 X 1
#7: VECTOR| COS(t) - ——8¥ — + —, £, 0, 3.14, 0.1
2.C05(t) 2

reduced form for the equation of the normals

3
#8: SOLVE(2.SIN(t).COS(t) + (1 - 2.y).SIN(t).COS(t) - x+SIN(t), y)

5.C0T(t)

2 X 1
#9: y = @S(t) - —— + —
2.C0S(t) 2
d 3
#10: — (2.SIN(t).COSCt) + (1 — 2.y).SIN(t).COS(Et) — x-SIN(E))
dt

parameterization of the evolute

2
2-5IN

2
()
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=Nvelopes
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General definition of the
gnyvelope of a family of plane

CUrves
Consider a parameterized family F of plane

curves , dependent on a real parameter k. We
denote by an equation for the curves in the
family F. A plane curve E is called an envelope of
the family F if the following properties hold:

() every curve is tangent to L;

(i1) to every point M on E is associated a value
k(M) of the parameter k, such that is tangent to E
at the point M;

(iii) The function k(M) is non-constant on every
arc of E.
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sliding on a parabole
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diEangents to a given curve

The graph of a smooth
function can be viewed
as the envelope of its
tangents
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../../../MesPapiers/EN_COURS/envelopes/graph of  function as envelope of its tangents.ggb

sliding on a parabole
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ANgeometric progression family
ofdlines : algebraic treatment

We consider the 1-parameter
family F of lines given by the
equations

where c is a real parameter.

1. We conjecture that an
envelope is the parabola
whose equation is

2.  We check this
graphically.

3.  We check this
algebraically.
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../../../MesPapiers/EN_COURS/envelopes/envelope of a family of lines.dfw

dame example: infinitesimally
close lines

We consider the 1-
parameter family F of
lines given by the
equations

where c is a real
parameter.
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50IVing the system of equations
Gy, c)=0 and der(f(x,y,c),c)=0]

.

An envelope of the family is (a subset of) the curve
defined by the following equations:
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a given curve
defined by 1,c,c”"2
exampl
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Asfamily of circles sliding on a
parabola

JEiIe Edit Insert Author Simplify Solve Calculus Options Window Help

DEEHS |4 RBX |F Dkl =~ Q% |nd f 1|+ X% &

"(Y‘Algebra 1 envelope circles on a parabola.dfw
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../../../MesPapiers/EN_COURS/envelopes/envelope circles on a parabola.dfw

Asfamily of circles sliding on a
parabola
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../../../MesPapiers/EN_COURS/envelopes/envelope circles on a parabola.dfw

ircles whose centers are on a
given ellipse

Algebral envelope of circles centered on an ellipse - one parameter.dfw

2D-plot 11

#5:

1
2
circle(c) = (x - 2-COS(C

envelope(c) := SOLUTIONS[

envelope(t)

envelope(u)

2
c)) o+

circle(c) ~ — circle(c), [x, yl, Rea1]

[

1 2
y - —-SIN(C)] -1
J2

d

dc

-4.00

c=220

an ellipse

envalope(3.8)
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../../../MesPapiers/EN_COURS/envelopes/envelope of circles centered on an ellipse - one parameter.dfw

ircles whose centers are on a
given ellipse

Algebral envelope of circles centered on an ellipse - one parameter.dfw

2D-plot 11

#5:

1
2
circle(c) = (x - 2-COS(C

envelope(c) := SOLUTIONS[

envelope(t)

envelope(u)

2
c)) o+

circle(c) ~ — circle(c), [x, yl, Rea1]

[

1 2
y - —-SIN(C)] -1
J2

d

dc

-4.00

c=220

an ellipse

envalope(3.8)
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../../../MesPapiers/EN_COURS/envelopes/envelope of circles centered on an ellipse - one parameter.dfw

ASramily which has no envelope

Algebral affine coefficients family of lines - no envelope.dfw 2D-plot 1:1

#1: m-21x+(m+ 1)y —-m=0

#2: VECTOR((m - 1)+x + (m + 1)+»y —m = 0, m, -10, 10)

d
#3: — (m - 1)ex + (m + 1)y — m)
dm

d
SOLVE[(m —)x+ m+ 1)y -m=0a — ((m=-2L)ex + (m+ L)y - m), [x, y]]
dm

#5:

general case of a family of lines with affine coefficients

#6: (arm + b)ex + (ceom + d)ey + (eem+ ) =0

d
#7: — ((am + b)ex + (com + d)ey + (eem + F))
dx

d
SOLVE[(a-m +b)ex + (com + d)oy + (eem + f) =0 A — ((asm + b)ex + (com + d)vy + (eem +
dx

), Ix, Y]]
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General definition of the
lope of a family of plane
Irves (once again)

neterized family F of plane curves,
pendent on a real parameter k. We denote by an
l1ation for the curves in the family F. A plane curve
alled an envelope of the family F if the

wing properties hold:

every curve 1is tangent to E;

(ii) to every point M on E is associated a value k(M)
of the parameter k, such that is tangent to E at the
point M;

(iii) The function k(M) is non-constant on every arc
of E.
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1sition towards 3D

 of a family of surfaces given by

ations:
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z,¢)=0 is given by the solution
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Example

= Let

= The envelope of the family
is given by:

= An implicit equation for
the envelope:
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Here work may be performed by
hand

To eliminate ¢ between the first two equations, we solve the equation v =¢(3¢—2z) for

z—.?n}-'+z1 z+.,,'|,'3}-'+z1

Then we substitute the two solutions in the equation x—¢*(z —2¢)=0:

¢, and obtain two solutions: ¢ =

y

. “1 - —
| ~ PN I~ 2

1,||| v+ =z P B B o
N Tzl N 7

3

\I

I2 2
Eta vtz
_2 L

=0|

3

3

By expanding the equation27(x—x)(x—x,) =0, we obtain an implicit equation for the

envelope:
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Here work may be performed by

hand

To eliminate ¢ between the first two equations, we solve the equation v =¢(3¢—2z) for

z—.?n}-'+z1 2+\|"'i1'+2

¢, and obtain two solutions: ¢ =

Then we substitute the two solutions in the equation x—¢*(z —2¢)=0:

- 5 3 F— -
. -1}Il+z._ , ) :‘L_' 1
¥ - -—

z

LWAYS

—
i 7
_E+a3v+=zE
-2 N =
3
By expanding the equation27(x—x)(x—x,) =0, we obtain an implicit equation for the
envelope:

27x +1 8xyz + 4z’ — -—1}-'3 - ;.--lz1 =0.
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Remark on t
trans

he 2D -> 3D

tion

Critical Non-critical

Algebraic work

Numerical work

Graphical work

In 3D graphics: it is important to have animated graphs, at
least rotating graphs
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Problem: implicitization

Solving the system

yields a parameterization of the envelope

Question: when is it possible to find an implicit form
for an equation of the envelope?

Answer: not always.

Partial solution: approximate implicitization (T.
Schultz and B. Juttler 2010)
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cducational aspects

Revival of clz

, egisters of representation
nsion of the curriculus
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Why to revive these topics

= Interesting topic per se (not
valid for all students)

= Nowadays provides a
blended activity
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Applications in science and
engineering

ities

heory of Caustics, l \

ic 1s the envelope « t rays

or refracted by a c 1 surface or
he projection of that envelope of
other surface. The causticis a
urface) to which each of the light
gent, defining a boundary of an

of rays as a curve of concentrated
light. efore in the image to the right, the
caustics are the bright edges. These shapes — :
often have cusp singularities. e -

ef: Arnold 1976, quoted by Capitanio 2002,
and Thom 1962).

Experiment with 3D Studio Max
using caustics, the reflection of

TIME 2014 - Kremms July 3rd light through water on to a surfﬂ)ce.



Wptics: Caustic of an ellipse

http:/ /demonstrations.wolfram.com/DynamicBilliardsInEllipse/
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[0 revive these topics:
Numerous applications in
sclence and engineering

ematics: rigid body motion in
lane, in collision avoidance of

t motion, construction of gears, etc.

nan and Peternell 2000).
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tional aspects

lassical (forgotten?) topics using ICT's

strumental gene: egisters of representation
nsion of the curriculu
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51 udent engagement

pement

fective engage
lem: In an ICT rich environment, students
| are considered as users rather than

ers (Akbiyik, 2011 -
www.revistaeducacion.mec.es/re352/r
e352_08ing.pdf)
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GUiding questions for the choice

[

[ [ E [

of a CAS

Depends of age/ maturity / CAS literacy of the
students

Menu-driven vs command driven
Graphics quality

Animations

Availability of a slider-bar

+ The availability of powerful enough algorithms to

solve non linear systems of equations (Grobner
bases, resultants)

Algorithms for implicitization (idem)
Sometimes useful: use an additional software
> v.s. in 3D - Derive and DPGraph
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cducational aspects

assical (forgotten?) topics using ICT's

nsion of the curric
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lnstrumental genesis

Rabardel & Samurcay, 2001 : the instrument is a mixed entity “made up of
both artifact-type components and schematic components ... called utilization
schemes. This mixed entity is born of both the subject and the object. It is this
enic)ity which constitutes the instrument which has a functional value for the
subject”.

M Bartolini-Bussi and M. A. Mariotti, 2002: The utilization schemes are
progressively elaborated in using the artifact in relation to accom lishinﬁ a
particular task; thus the instrument is a construction of an individual, it has a
psychological character and it is strictly related to the context within which it
originates and its development occurs. The elaboration and evolution of the
instruments is a long and complex process that Rabardel names instrumental
genesis.

Instrumental genesis can be articulated into two processes:

Instrumentalisation, concerning the emergence and the evolution of the
different components of the artifact, e.g. the progressive recognition of its
potentialities and constraints.

Instrumentation, concerning the emergence and development of the
utilization schemes.
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between different
ters of representation

995), Robert Speiser and Carolyn Maher
(Handbook 2002), Norma Presmeg (ESM 61, 2006), DP
(2007), DP and Kidron (2008), etc.
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ibilities of a particular system of
esentation registers.

sentations without changing the
s being denoted.

ind of transformation

processes

These differences must be
acknowledged in the teaching
and learning of mathematics.

TIME 2014 - Krems July 3rd

Duval (ESM 61, 2006)

49



Duval (ESM 61, 2006)

Two types of transformations on
semiotic representations:

« Treatments: those transformations Maple: right mouse
that can be carried out within the click on the graph
possibilities of a particular system of
representation registers.

= Conversions: those transformations of
representations without changmg the
objects being denoted.

Each kind of transformation

requires different cognitive

processes

These differences must be
acknowledged in the teaching
and learning of mathematics.
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graph changing from within register.mw

Isters: the GeoGebra case

Command Description  Value Graphics

Sl

I\

~ Algebra

= | b L= Function
= Function Function J f(x) = x*=3x
@ fX) = X3 3% L@ () = X3 - 3x Line
= Line Line } ary =527 915
a =Tangent[A, f] -3 a: Tangent to f at x = x(A) b: y = 261X + 3.81
b = Tangent[B, f] - b: Tangent to f at x = x(B) i C: Y = -2.45% = 0.08
c =Tangent[C, f] (@ c: Tangent to f at x = x(C) d: Y = 672X - 11,66
d =Tangent[D, f @ d: Tangent to fat x = x(D) @:y=3Mx-622
e = Tangent(F, f] -3 e: Tangent to f at x = x(F) Q:y=2
g = Tangent(l, f] ~-@ g: Tangent to f at x = x( Sl hiys-2
- h = Tangent(H, f] @ h: Tangent to f at x = x(H) Point
- Point Point d A
A = Point[f] A =Pointon f B

B = Point(f] B = Pointon f
C = Point(f] C =Pointon f
D = Point[f] D = Pointon f
E = Point[f] E = Pointon f
F = Point[f] F = Point on f
G = Point[f] G = Point on f
H = Point(f] H = Point on f
| = Point[f] | =Pointonf

» Graphics

LhLuWiwe Vi

0OC0OPOOOLO®
0oL OE

Input: \
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../../../MesPapiers/EN_COURS/envelopes/graph of  function as envelope of its tangents.ggb

SWItching in two reverse
directions

Graphical

Numerical

Algebraic

Algebraic Algebraic
Numerical Numerical
Graphical Graphical

Derive GeoGebra
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-l

Jjcational aspects

lassical (forgotten?) topics using ICT's

egisters of representation
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r

tension of the curriculum

ann:
of the curriculum with isoptic curves

)ns to toric sections

| O

. h. Dana-Picard (2005): Notes about Reflection,
dge, and Execution, Proceedings of the 4th CAME
nference, Roanoke, Virginia, available:

avi, R. Zaks and Th. Dana-Picard (2006): Analytic Geometry,
puter Assisted Activities, Teachers resource e-book, Machshevatika,

. ana-Picard, G. Mann and N. Zehavi (2006): New perspectives on conic
sect Proceedings of TIME-2006 (ACDCA symposium), Dresden,
Germany, available:

@ G. Mann, Th. Dana-Picard and N. Zehavi (2007): Technological Discourse on
CAS-based Operative Knowledge, International Journal of Technology in
Mathematics Education 14 (3), 113-120.
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Possible extensions here

= Curvature is generally taught in Calculus
courses

= Extension to evolutes

= Study of caustics. In particular in the case of
CONICS.
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maticians and physicists

shape a "cusp curve,"

ey call the bright edge a
"caustic,”... "It happens because a

lot of 11ght rays can pile up along

curves.'

\
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../../../MesPapiers/EN_COURS/envelopes/Physicists See The Cosmos In A Coffee Cup.htm

Caustics also show up in gravitational
lensing, a phenomenon caused by
galaxies so massive that their gravity
bends and distorts light from more R
distant galaxies. "It turns out that their | i
gravity is so powerful that some light | . . .
rays are also going to pile up along | S
curves," said Petters, a gravitational
lensing expert.

"Mother Nature has to be creating these
things," Petters said. "It's amazing how
what we can see in a coffee cup extends
into a mathematical theorem with
effects in the cosmos."
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