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The most important question in teaching mathematics

should be

Why?



Telling students things

they can discover on their own,

is a crime.



Introduction

The talk is organized as follows:

I Proving at schools.

I Verification by DGS.

I Visual proofs.

I Classical proofs.

I Proving by CAS.

I Searching for loci.

I Verification in 3D.



Proving at schools

I Proving theorems does not belong to favorite activities in
math lessons.

I On the other hand, without proving there is no mathematics.

I How to get over this disproportion?



Proving at schools

I Make proving more attractive.

I Persuade students that proofs are necessary.

I Prove such statements we are doubting about.

I Show statements which seem to be true but that are not valid.

I Visualize a proof if possible.

I Show nice proofs.



Make proving more attractive

Example

Cut the square into two triangles and two trapezes by the figure



Make proving more attractive

Assemble a rectangular from these 4 pieces



Make proving more attractive

Area of the square equals 8 x 8 = 64.

Area of the rectangle equals 5 x 13 = 65.

64 = 65?

Why?



Make proving more attractive

Area of a parallelogram ABCD equals 1.



Make proving more attractive



Make proving more attractive

Numbers 5, 8, 13 which occur in this example are three consecutive
members of the well known Fibonacci sequence, where

an+1 = an + an−1.

For instance the sequence 1, 1, 2, 3, 5, 8, 13, 21, . . . is a Fibonacci
sequence. One of its properties is

an−1 × an+1 = a2n ± 1.

In our case we have 5× 13 = 82 + 1 . If we take the next triple
8, 13, 21 then 8× 21 = 132 − 1 , etc.



Make proving more attractive

Example

Make an equilateral triangle by paper folding.



Make proving more attractive

Fold the paper such that C ′ lies on bisector GH



Make proving more attractive

We finish the triangle



Make proving more attractive

Why it is an equilateral triangle?



Make proving more attractive

Remarks:

I The use of scissors and a sheet of paper makes mathematics
more attractive.

I Manual activity is required.

I First students can measure the angles by a protractor.

I Second students try to find a proof.

I Construction of 3D version — a regular tetrahedron.



Make proving more attractive

I Paper folding is more powerful than Euclidean constructions
by ruler and compasses.

I For instance by paper folding we can perform a trisection of
an arbitrary angle.

I Introduce paper folding into math lessons.

I We should always ask: Why?



Verification in DGS

I Verification in DGS: A statement is numerically checked by
DGS in infinitely many instances.

I Verification in DGS can be considered as the first step of
proving.

I Verification in DGS can replace a proof in lower classes at
schools.

I Verification in DGS is not a proof.



Verification in DGS

I There is a high probability that a statement which is verified
in DGS is valid.

I Verification in DGS enables stating conjectures.

I Verification in DGS motivates students.



Verification in DGS

Example

(Simson–Wallace): Let P be a point of the circumcircle of 4ABC .
Then orthogonal projections K , L,M of P onto the sides of ABC
are collinear.



Verification in DGS

I We show that M lies on the line KL.

I Clicking in GeoGebra on ”Relation between Two Objects” we
get the answer: Point M lies on the line KL.

I If P moves along the circumcircle, we still see this text.



Verification in DGS

If we detach P from the circumcircle the text disappears. We see
that points K , L,M are not collinear.



Verification in DGS

Example

Given 4ABC with vertices on an equilateral hyperbola. Then the
orthocenter H of 4ABC lies on the hyperbola as well.



Verification in DGS

I We ask whether the orthocenter H lies on hyperbola.

I Using the window ”Relation between two objects”, we get the
answer Point H lies on hyperbola.

I If we move the vertices A,B,C along the hyperbola, we still
receive the same answer.



Verification in DGS

I We can persuade students that the text works right (and we
do not cheat them).

I Using the window ”Detach” we detach the vertex B from the
hyperbola, and the text disappears.

I We see that the orthocenter H does not lie on the hyperbola.



Verification in DGS

In the last example we investigated one of properties of an
equilateral hyperbola.

I Equilateral hyperbola has in a certain sense the same
importance as a circle.

I It canonical equation is x2 − y2 = 1, whereas the equation of
a circle is x2 + y2 = 1.

I That is why an equilateral hyperbola has many unique
properties. One of them was given above.

I Everybody knows that an equilateral hyperbola is a graph of
indirect proportion or a graph of linear fractional function.



Verification in DGS

I We can also verify geometric inequalities.

I It is clear that we are not able to check all positions of the
triangle ABC .

I Mathematical proof is necessary.

I Let us see the next example.



Verification in DGS

Example

Given a triangle with side lengths a, b, c and area P. Then

a2 + b2 + c2 ≥ 4
√

3P

with equality for an equilateral triangle.



Visual proofs

Sometimes, to prove a statement, we can use a visual proof.

I Visual proofs are closely connected with DGS.

I Visual proof is a proof which follows from the figure.

I Visual proofs are the best proofs, especially at schools.

I In the following we demonstrate a visual proof of the previous
inequality.



Visual proofs

Inequality
a2 + b2 + c2 ≥ 4

√
3P

can be written in the form

a2
√

3

4
+

b2
√

3

4
+

c2
√

3

4
≥ 3P.

Realize that

Pa =
a2
√

3

4
, Pb =

b2
√

3

4
and Pc =

c2
√

3

4

are areas of equilateral triangles with side lengths a, b and c.

Then we get
Pa + Pb + Pc ≥ 3P.



Visual proofs



Visual proofs
The same inequality for a quadrilateral ABCD



Visual proofs

Two previous inequalities were special cases of the inequality

a21 + a22 + ...+ a2n ≥ 4tg
π

n
P,

where a1, a2, . . . , an are the side lengths of a plane n-gon with area
P.
The equality is attained iff the n-gon is regular.

For n = 3 we get

a2 + b2 + c2 ≥ 4
√

3P,

for n = 4 we get

a2 + b2 + c2 + c2 ≥ 4P.



Visual proofs

I Visual proofs in connection with DGS represent a very strong
tool for proving at schools.

I Visual proofs are very convincing.

I To find a visual proof of a statement is not easy. It requires
deep knowledge and experience.

I Use visual proofs at schools whenever it is possible.



Visual proofs

See:

I R. B. Nelsen: Proofs without words I, II.

I C. Alsina, R. B. Nelsen: Charming proofs: A journey into
elegant mathematics.

I B. Polster: Q.E.D. Beauty in mathematical proof.



Classical proofs

I By DGS we recognize relations between geometric objects.

I By changing positions of objects in DGS we can analyze the
problem.

I This could help us to find a way to a classical (readable) proof.

I There exists software on how to find relations between
subjects, e.g. OK Geometry by prof. Magajna, ...

I Many researchers explore ways how to find readable proofs by
computer.



Classical proofs

Classical proof of the Simson–Wallace theorem:



Classical proofs

I We needed a key idea to prove classically the Simson–Wallace
theorem.

I That is why proving statements is difficult (not only at
schools).

I What to do if we do not have a key idea .....

I Therefore scientists try to find an automated way of proving.



Classical proofs

I Classical proof requires a deep insight into the problem.

I If we do not know a classical proof then a computer proof
comes into consideration.

I We should give priority to classical proving over computer
proving.



Proving by CAS

I Theory of automated geometry theorem proving.

I Proving theorems.

I Discovering theorems.

I Based on results of commutative algebra in last 40 years.

I Two basic methods — Groebner bases method and Wu–Ritt
method.

I (Radical) ideal membership theorem, Buchberger’s algorithm.



Proving by CAS

Example

Three heights of a triangle are concurrent.

Introduce a rectangular coordinate system such that A = (0, 0),
B = (1, 0), C = (u, v) and H = (p, q).



Proving by CAS

We’ll show that

if H ∈ ha ∩ hb then H ∈ hc .

H ∈ ha ⇔ (H − A) · (C − B) = 0⇔ h1 := p(u − 1) + qv = 0.

H ∈ hb ⇔ (H − B) · (C − A) = 0⇔ h2 := (p − 1)u + qv = 0.

H ∈ hc ⇔ (H − C ) · (B − A) = 0⇔ h3 := p − u = 0.



Proving by CAS

How to show that from

p(u − 1) + qv = 0 and (p − 1)u + qv = 0

the relation p − u = 0 follows?

It suffices to write

1 · [p(u − 1) + qv ] + (−1) · [(p − 1)u + qv ] = p − u

or
1 · h1 + (−1) · h2 = h3.

If h1 = 0 and h2 = 0 then from the last relation we get h3 = 0.

Q.E.D.



Proving by CAS

All procedure can be done automatically by computer. In the
software CoCoA1 we enter

Use R::=Q[u,v,p,q];

I:=Ideal(p(u-1)+qv,(p-1)u+qv);

NF(p-u,I);

and get NF = 0.

This means that the conclusion polynomial p − u can be expressed
as a linear combination of hypotheses polynomials p(u − 1) + qv
and (p − 1)u + qv .

1Program CoCoA is freely distributed at http://cocoa.dima.unige.it



Proving by CAS

If we want to know the coefficients of this linear combination, we
enter

Use R::=Q[u,v,p,q];

I:=Ideal(p(u-1)+qv,(p-1)u+qv);

GenRepr(p-u,I);

and get the answer [1,−1]. This means that

1 · h1 + (−1)h2 = h3.



Proving by CAS

To prove the last theorem in a math lesson:

I First verify the theorem in DGS. Show that H = ha ∩ hb
belongs to hc .

I Second try to prove the theorem classically.

I If we find a classical proof then we can omit the computer
proof.



Proving by CAS

Proving by CAS consists of the following steps:

I Introduction of a suitable coordinate system (if necessary).

I Translation of geometric relations into algebraic equations and
inequations.

I Expression of a conclusion polynomial in the form of a linear
combination of hypotheses polynomials. If is not possible then
go on by:

I Searching for subsidiary conditions (cases of degeneracy,
objects are not defined, etc.) and adding them to the original
hypotheses.



Proving by CAS

I Now the process repeats. Go on by:

I Expression of a conclusion polynomial in the form of a linear
combination of hypotheses polynomials plus subsidiary
conditions.

I The theory is not complete (in real geometry), i.e. it can
happen that we can not decide whether the statement is true
or not.

I Some of these steps are still not solved in the theory of
automated geometry theorem proving, e.g. translation of
subsidiary conditions back into geometry.



Proving by CAS

How to use proving by CAS in math lessons?

I It seems that automated proof is a ”button” proof, i.e. press
a button and receive the answer ”yes” or ”not”.

I From pedagogical point of view ”Button proofs” are not
suitable at schools.

I But the situation is more complicated. It is not easy to do an
automated proof of a statement, because usually human
interaction is needed.

I By my experience from the Faculty of Education, University of
South Bohemia, only best students are able to produce an
automated proof without help.



Proving by CAS
Let us see the automated proof of the theorem which we verified in
DGS before:

Example revisited

Given 4ABC with vertices on an equilateral hyperbola. Then the
orthocenter H of 4ABC lies on the hyperbola as well.



Proving by CAS

I Introduce a coordinate system such that A = (a1, a2),
b = (b1, b2), C = (c1, c2) and H = (p, q).

I Describe geometric objects and relation between them:

A ∈ f ⇔ a1a2 − 1 = 0,

B ∈ f ⇔ b1b2 − 1 = 0,

C ∈ f ⇔ c1c2 − 1 = 0,

(H − A) ⊥ (B − C )⇔ (p − a1, q − a2) · (b1 − c1, b2 − c2) = 0

(H − B) ⊥ (C − A)⇔ (p − b1, q − b2) · (c1 − a1, c2 − a2) = 0.

We want to show that

H ∈ f ⇔ pq − 1 = 0.



Proving by CAS

We enter

Use R::=Q[a[1..2],b[1..2],c[1..2],p,q];

I:=Ideal(a[1]a[2]-1,b[1]b[2]-1,c[1]c[2]-1,

(p-a[1])(b[1]-c[1]),(q-a[2])(b[2]-c[2]),

(p-b[1])(c[1]-a[1]),(q-b[2])(c[2]-a[2]));

NF(pq-1,I);

and get NF 6= 0.

But if we add a subsidiary condition (b1 − c1)(b2 − c2) 6= 0 to the
ideal I then NF = 0 and the theorem is proved.

Realize that (b1 − c1)(b2 − c2) 6= 0 geometrically means that
B 6= C which is acceptable since otherwise the triangle ABC
degenerates.



Proving by CAS

Then we enter

Use R::=Q[a[1..2],b[1..2],c[1..2],p,q,t];

J:=Ideal(a[1]a[2]-1,b[1]b[2]-1,c[1]c[2]-1,

(p-a[1])(b[1]-c[1]),(q-a[2])(b[2]-c[2]),

(p-b[1])(c[1]-a[1]),(q-b[2])(c[2]-a[2]),

(b[1]-c[1])(b[2]-c[2])t-1);

NF(pq-1,J);

and get NF=0.

The theorem is proved.



Proving by CAS

Example revisited

Given a triangle with side lengths a, b, c and area P. Then

a2 + b2 + c2 ≥ 4
√

3P

with equality for an equilateral triangle.

We introduce a coordinate system such that A = (0, 0),
B = (c, 0), C = (u, v). Then



Proving by CAS

a = |BC | ⇔ a2 = (u − c)2 + v2,

b = |CA| ⇔ b2 = u2 + v2,

P = area of ABC ⇔ P = 1/2cv .

We’ll write the left side in terms of coordinates

a2 + b2 + c2 − 4
√

3P = (u − c)2 + 2v2 + u2 + c2 − 2
√

3cv

which can be expressed as the sum of squares

a2 + b2 + c2 − 4
√

3P = 2(u − c/2)2 + 2(v − c
√

3/2)2 ≥ 0 .

The equality is attained iff u = c/2 and v = c
√

3/2, i.e, ABC is
equilateral.



Proving by CAS

I The use of CAS caused a revolution in proving theorems.

I Hundreds of theorems were proved and even discovered.

I There are still many unsolved problems which await their
solution.

I Efficiency of proving by CAS depends both on the power of
computers and on algorithms based on the level of
mathematical knowledge.

I Almost 40 years elapsed since 1976 when the first computer
proof was done - Four colour problem.



Searching for loci

I Searching for loci of points belongs to the most difficult parts
of geometry curricula at all school levels.

I New technology tools facilitate this problem considerably.

I Both DGS and CAS are used.

I The valuable topic for students.



Searching for loci

By searching for loci we keep with students the following rules:

I First demonstrate the problem with DGS and construct some
points of the searched locus.

I On the base of the previous step try to guess the locus.

I Then use the window ”Locus” (Geogebra, Cabri,...) to draw
the locus.

I Use CAS to determine the locus equation.



Searching for loci

Example

Let ABC be a triangle with a base AB and a vertex C on a given
line k. Find the locus of the orthocenter H of ABC when C moves
along the line k.



Searching for loci

What is it?

I Some students say: It is a parabola.

I Another students say: It is a hyperbola.

I Or it is neither parabola nor hyperbola?

I What is the solution?

I We’ll search for the locus equation.



Searching for loci

Introduce a coordinate system such that A = (0, 0), B = (1, 0),
C = (u, v), H = (p, q)
and let k be an arbitrary line k : ax + by + c = 0.



Searching for loci

For the intersection H it holds:

(H − C ) ⊥ (B − A)⇔ h1 : (p − u, q − v) · (1, 0) = 0,

(H − A) ⊥ (C − B)⇔ h2 : (p, q) · (u − 1, v) = 0.

Further

C ∈ k ⇔ h3 : au + bv + c = 0.



Searching for loci

We get the system of three equations h1 = 0, h2 = 0, h3 = 0 in
variables u, v , p, q, a, b, c .

To find the locus of H = (p, q) we eliminate variables u, v in the
ideal I = (h1, h2, h3) to obtain a relation in p, q which depends
only on a, b, c . We enter

Use R::=Q[a,b,c,u,v,p,q];

I:=Ideal(au+bv+c,p-u,(u-1)p+vq);

Elim(u..v,I);

and get the equation

κ : bp2 − apq − bp − cq = 0.



Searching for loci

I Suppose that (a, b) 6= (0, 0) since in this case the line k is not
defined. Then κ = 0 is the equation of a conic.

I The cases k = hAB , k = AC , or k = BC lead to singular
conics which consist of two intersecting lines which are not
depicted.

I Considering regular conics we get two cases:



Locus equations

1. If k ‖ AB the locus is a parabola with the vertex
(1/2,−b/(4c)) and a parameter |c/(2b)|.



Searching for loci

2. If k ∦ AB we obtain a hyperbola centered at
(−c/a,−b(a + 2c)/a2) with one asymptote perpendicular to AB
and the second asymptote perpendicular to the line k .



Searching for loci

I The locus above was found by algebraic and computer tools.

I It would be interesting to find a classical geometric proof!

I The next example shows an algebraic curve of the higher
degree as a locus.



Searching for loci

Example

Let ABC be a triangle with a side AB and a vertex C on a circle k
centered at A and radius |AB|. Find the locus of the orthocenter H
of ABC when C moves along k .



Searching for loci
Let A = (0, 0), B = (a, 0), C = (u, v) and H = (p, q). Then:

(H − C ) ⊥ (B − A)⇔ h1 : (p − u, q − v) · (1, 0) = 0,

(H − A) ⊥ (C − B)⇔ h2 : (p, q) · (u − a, v) = 0.

C ∈ k ⇔ h3 : u2 + v2 − a2 = 0.



Searching for loci

Elimination of u, v in the system h1 = 0, h2 = 0, h3 = 0 gives in
the program Epsilon2

with(epsilon);

U:=[p-u,(u-a)p+vq,uu+vv-aa]:

X:=[p,q,u,v]:

CharSet(U,X);

the equation
p2(a− p)− q2(a + p) = 0

which is an algebraic curve of third degree called strophoid.

2Program Epsilon is freely distributed at
http://www-calfor.lip6.fr/∼wang/epsilon/



Searching for loci
The strophoid can be drawn as the union of graphs of two
functions

f : q = p

√
a− p

a + p
g : q = −p

√
a− p

a + p

The graphs of the functions f and g for a = 1.



Searching for loci

I The strophoid or more exactly the right strophoid has many
interesting properties.

I For instance you can use it in calculus to draw graphs above.

I Or to compute the area P of a loop which equals

P = 2a2 − πa2

2

i.e. the area equals ”two squares minus two circles over a”.

I Strophoid is a candidate on the list of algebraic curves of
degree higher than 3 which should be taught at schools.



Strophoid is the locus of foci of the ellipse in a cylinder section
when the section plane rotates around the tangent to the cylinder
at A.



Searching for loci

3D locus example

Two skew lines k , l are given. Determine the locus of points which
have the same distance to the lines k and l .

If two lines k , l intersect then it is well-known. The locus form two
mutually orthogonal lines (in a plane) or two mutually orthogonal
planes (in a space) which bisect angles of the lines.



Searching for loci
What is the locus if the lines k , l are skew?

We determine the locus equation.

Let k : X = A + t~u and l : X = B + s~v , where A = [0, 0, a],
~u = (m, n, 0), B = [0, 0,−a] and ~v = (n,m, 0). Choose m, n such
that m2 + n2 = 1.



Searching for loci

Then

K ∈ k ⇔ h1 := K − (A + t~u) = 0,

PK ⊥ k ⇔ h2 := (P − K ) · ~u = 0,

L ∈ l ⇒ h3 := L− (B + s~v) = 0,

PL ⊥ l ⇔ h4 := (P − L) · ~v = 0,

h5 := |PK | − |PL| = 0,

h6 := m2 + n2 − 1 = 0.



Searching for loci

Elimination of s, t, n in the system h1 = 0, h2 = 0, . . . , h6 = 0

gives
p2 − q2 = cr ,

where c = − 4a
2m2−1 .

We see that this is the equation of an equilateral hyperbolic
paraboloid.



Searching for loci

For m = 1/2 and a = 1 we get a hyperbolic paraboloid

p2 − q2 = 8r .



Searching for loci
Note that the less is the coefficient a (i.e. the skew lines are at the
smaller distance) the more is the hyperbolic paraboloid similar to
two orthogonal planes. For instance for a = 1/16 and m = 1/2 we
get

x2 − y2 =
1

2
r .



Searching for loci
If m and n tend to have equal direction (i.e. the skew lines tend to
be parallel) then the hyperbolic paraboloid is similar to a plane.
For a = 1 and m = 3/5 we get

x2 − y2 =
100

7
r .



Verification in 3D

Verification in 3D

I Locus in a plane can be (numerically) verified either by ruler
and compasses of by DGS.

I If the locus is in 3D then verification is more complicated.

I We’ll verify the last locus by the method of descriptive
geometry with the use of DGS.



Verification in 3D

I The locus of P which has the same distance to two given
skew lines k , l is an equilateral hyperbolic paraboloid

x2 − y2 = − 4a

2m2 − 1
z .

I For a given a,m put z = k and explore plane sections

x2 − y2 = − 4a

2m2 − 1
k

which are equilateral hyperbolas.

I In a one–plane orthogonal projection we map this equilateral
hyperbola, place a point P on it, end construct feet K , L of
perpendiculars to the skew lines k , l .

I Then we construct the distances |PK | and |PL|.
I We show that |PK | = |PL|.



Verification in 3D



Verification in 3D

I Note the role of the equilateral hyperbola again.

I The method is based on the fact that a hyperbolic paraboloid
can be covered by a pencil of conics.

I With sliders we can change the values m, a and k .

I This enables to verify the locus in all positions of P.



Thank you for attention
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